
Distributed Morphology over strings
Marina Ermolaeva

mermolaeva@uchicago.edu

Daniel Edmiston
danedmiston@uchicago.edu

Introduction
What we are doing:

• Formalizing Distributed Morphology (DM) and Syntax/Morphology
interface

• Testing core assumption in DM (and thus probing linearization’s place)
• Solidifying intuitions re: nature of DM’s operations

What we are proposing:
• Syntax: derivation over feature structures (FSs)
• Linearization: pre-morphology flattening of trees of FSs
• Morphology: regular relation mapping strings of FSs to strings of

morphophonemes

Motivation
• Claim of DM: “Syntax all the way down”, i.e. morphology over trees;

This predicts morphology behaves like syntax.
• However, work in NLP treats morphology with finite-state methods (e.g.

Karttunen et al. 1992); syntax cannot be done this way (Shieber 1985)

Reg CF CS RE• •m s (morphology vs. syntax)

• If we eliminate binary trees from morphology, we get for free that
morphology appears (at most) regular

• What would DM look like without trees (i.e. over strings)?

Syntactic assumptions
Framework: Minimalist Grammars (MGs, Stabler 1997)

• A set of syntactic features:
Syn = base (categories)

[{=f | f 2 base} (selectors)
[{+f | f 2 base} (licensors)
[{-f | f 2 base} (licensees)

• A lexicon: Lex ⇢ S⇤
Syn

⇤, where S is a set of pronounced segments
• Two structure-building operations:

=fg

+

fd

)

<

g d

+fg

-fd

)

>

d g e

(merge) (move)
Modification: syntax assembles morphological words

• Lowering and Head Movement (HM) as
merge with concatenation of heads

• Mirror Theory (Brody 1997, Kobele 2002):
strong and weak nodes

• Three subtypes of selector features:
=f (normal merge)
=>f (strong node; merge + HM)
<=f (weak node; merge + Lowering)

• Boundary symbols (#) separate words
• Morphology after syntax: =>f and <=f

only select non-moving expressions

Example: toy grammar

John :: d -k

walk :: =d v

-s :: <=v +k t

>

<

<

John ewalk -s #

-s e

John #

yield: # John # walk -s #

Separating syntax and phonology
Modification: Lexical items no longer contain phonological information

• Feature structures:
FS = P(M)⇥ (S [{e, none}), where none denotes the “placeholder”
exponent and M is a finite set of morphological features;
For s = hx, yi 2 FS, f eat(s) = x and exp(s) = y.

• Redefining lexicon:
Lex⇢{s | s2FS & exp(s)=none} Syn

⇤

• Feature structures after VI correspond to morphophonemes.

Example: FS-based grammar
D
{D, john, 3, sg}

none

E
:: d -k

D
{V, walk}

none

E
:: =d v

D
{T, prs, 3, sg}

none

E
:: <=v +k t

Morphological rules...
• Morphological rules operate on underspecified

feature structures:
FS

U

= P(M)⇥ (S [{e, none, ?}),
where ? stands for “any exponent”.

• “Context-sensitive” rewriting rules that do not
overwrite their own output define regular relations
over strings (Kaplan & Kay 1994)

Analogy: phonological rules
A rule in feature matrix notation is equivalent to
a set of rules over atomic symbols. For instance,
[�syl,+voi] ! [�voi] / [�voi]
abbreviates multiple rules:
b ! p / (p | t | k), d ! t / (p | t | k), ...

• Rewriting rule format for morphological rules:
structural description

A

=

A1,...,A
m

2FS

U

�
structural change

B

=

B1,...,B
n

2FS

U

/
left context

C

right context
D

(regular expressions over FS

U

[{#})

• A rule is purely morphological i� exp(A1) = ... = exp(A

m

) = exp(B1) = ... = exp(B

n

) = none;
feature-preserving i� S

m

i=1 f eat(A

i

) =
S

n

j=1 f eat(B

j

);
set-preserving i� f eat(A1) = ... = f eat(A

m

) = f eat(B1) = ... = f eat(B

n

).

Rule class |A| |B| Properties
fusion 2 1 feature-preserving,

purely morphological
fission 1 2 feature-preserving,

purely morphological
impoverishment 1 1 f eat(B1) ⇢ f eat(A1),

purely morphological
VI 1 � 1 exp(A1) = none,

exp(B

j

) 6= none for j 2 [1..|B|],
set-preserving

readjustment � 0 � 0 exp(A

i

) 6= none for i 2 [1..|A|],
exp(B

j

) 6= none for j 2 [1..|B|],
set-preserving

Example: DM rules for English morphology
Fusion:D
{Adj, bad}

none

ED
{Cmpr}

none

E
!

D
{Adj, bad, Cmpr}

none

E

Vocabulary Insertion:D
{take}

none

E
!

D
{take}

/t/

ED
{take}

/eI/

ED
{take}

/k/

E

Readjustment:D
{take}

/eI/

E
!

D
{take}

/U/

E
/

⇣D
{take}

?

E⌘⇤D{T, Pst}
?

E

... as regular relations
• Regular relations manipulate strings of unanalyzable symbols
• Instances: regular expressions over fully specified feature structures

For f s 2 FS

U

, inst(f s) = {x | x 2 FS & f eat(x) ◆ f eat(f s) & (exp(x) = exp(f s) or exp(f s) =?)};
For any regular expression X over FS

U

[{#}, inst(X) = X[x1 7!
S

inst(x1), ..., x

n

7! S
inst(x

n

)],
where {x1, ..., x

n

} is the set of all feature structures in X.
• Rule instantiations:

For any rule r = A ! B / C D (|A| = m, |B| = n),
batch(r) is the set of all rules a ! b / inst(C) inst(D) such that

a = a1, ..., a

m

2 FS and b = b1, ..., b

n

2 FS;
a

i

2 inst(A

i

) for i 2 [1..m];
f eat(b

j

) = f eat(B

j

) [(
S

m

i=1 f eat(a

i

) \S
m

i=1 f eat(A

i

))
exp(b

j

) = exp(B

j

) for j 2 [1..n].
• Kaplan & Kay 1994:

Simultaneous application of a rule set as batch rules;
Ordered rules as composition of regular relations.

Cyclicity as rule ordering
• Bobaljik 2000: VI proceeds cyclically from the root outwards and

deletes features it expresses;
• Outward sensitivity only to morphosyntactic features;
• Inward sensitivity only to morphophonological features.
Counter-examples: Deal & Wolf 2013, Gribanova & Harizanov 2015

• Adger 2003: Hierarchy of Projections (HoP)
Clausal: C i T i (Neg) i (Perf) i (Prog) i (Pass) i v i V
Nominal: D i (Poss) i n i N
HoP can be built into syntactic features to control merge.

• Simulating cyclicity e�ects on strings:
Ordering of VI rules follows HoP, allowing for possible mismatches;
Expressed features (provisionally) remain part of the representation.

Example: phonologically conditioned allomorphy in English

<

D
{N,apple,3,sg}

none

E
#

D
{D,indef}

none

E
#

Ordered VI rules:D
{N,apple,3,sg}

none

E
!

D
{N,apple,3,sg}

/æ/

ED
{N,apple,3,sg}

/p/

ED
{N,apple,3,sg}

/l
"
/

E

D
{D,indef}

none

E
!

D
{D,indef}

/@/

ED
{D,indef}

/n/

E
/ #

⇣D
{ }
/æ/

E ���
D
{ }
/e/

E ��� ...
⌘

D
{D,indef}

none

E
!

D
{D,indef}

/@/

E
/ #

⇣D
{ }
/b/

E ���
D
{ }
/d/

E ��� ...
⌘

Conclusion
• Our proposed architecture of grammar

SYN LIN MS VI MP PHON PF
"

(purely morphological, e.g. fusion)

MORPHOLOGY

"
(morphophonology, e.g. readjustment)

• Syntax/Morphology interface modelled by regular relations
• Morphology works over strings: binary trees not needed
• Linearization/flattening happens pre-morphology
• Predicts we should never see context-free morphology
• Our formalization helps make intuitions re: DM operations concrete

Abstract example: context-free morpho(phono)logy

b

b
ba

a

a
Unbounded nested dependencies:
incompatible with DM over strings

a a a ... b b b
Any natural language examples?

References: Adger, David. 2003. Core syntax: a minimalist approach. •Bobaljik,
Jonathan D. 2000. The ins and outs of contextual allomorphy. •Brody. Michael. 1997. Mirror
theory. •Deal, Amy R., and Matthew Wolf. 2013. Outward-sensitive phonologically-conditioned
allomorphy in Nez Perce. •Gribanova, Vera, and Boris Harizanov. 2015. Locality and directionality
in inward-sensitive allomorphy: Russian and Bulgarian. •Kaplan, Ronald M., and Martin Kay. 1994.
Regular models of phonological rule systems. •Karttunen, Lauri, Ronald M. Kaplan, and Annie
Zaenen. 1992. Two-level morphology with composition. •Kobele, Gregory M. 2002. Formalizing
Mirror theory. •Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language.
•Stabler, Edward P. 1997. Derivational minimalism.

