
Deconstructing Syntactic Generalizations
with Minimalist Grammars

Marina Ermolaeva
mail@mermolaeva.com

Introduction
• Goal: derive analyses of syntactic phenomena based on a quantitative metric and in

a way compatible with theoretical literature
• Convert a naive grammar into a linguistically motivated one via interpretable steps
• Factor out syntactic generalizations and express them as new lexical items

Minimalist grammars
• Introduced by Stabler (1997)
• Formalize the Minimalist framework

for syntax (Chomsky 1995)
• Lexical items (LIs): pairs consisting of

a string and syntactic features
• Operations: merge and move, which

consume matching features
• Complex words are formed via merge

+ head movement

• Syntactic features have a name (from
some set Base) and a type:

Attractor Attractee
merge =x (right) x (category)

x= (left)
=>x (head mvt)

move +x (overt) -x (licensee)
*x (covert)

Grammar Derived tree Multigraph Metrics
Mary :: d -k

laughs :: =d +k t
laughed :: =d +k t

jumps :: =d +k t
jumped :: =d +k t

>

<

Marylaughs
=d +k t

Mary
d -k t d

laughs

laughed
jumps

jumped

|Base| 3
∑syn 14

∑phon 28
bits 317.78

Mary :: d -k
-s :: =>v +k t

-ed :: =>v +k t
laugh :: =d v
jump :: =d v

>

<

<

Marylaugh
=d v

laugh-s
=>v +k t

Mary
d -k t v d

laugh
jump

-ed
-s

|Base| 4
∑syn 12

∑phon 16
bits 236.16

Decomposing lexical items

>

<

...d ...laughed
=d +k t

...-k ...

laughed :: =d +k t
↓

>

<

<

...d ...laugh
=d x

laugh-ed
=>x +k t

...-k ...

laugh :: =d x -ed :: =>x +k t
↓

>

<

<

...d ...<

laugh
y

-ε
=>y =d x

laugh-ed
=>x +k t

...-k ...

laugh :: y -ε :: =>y =d x
-ed :: =>x +k t

• LI decomposition (Kobele 2018,
to appear): split an LI into two and
add a new feature to Base

w :: αβxγ →
u :: αy
v :: =>yβxγ
w = u⊕ v

• For now: define ⊕ as concatenation

Operations
• Batch decomposition:

laugh :: =d v
laughing :: =d prog

laughs :: =d +k t
↓

laugh :: =d x
-ε :: =>x v

-ing :: =>x prog
-s :: =>x +k t

• Contraction:
remove an LI -ε :: =>x y; replace all
instances of x and y with a new feature
• Deletion:

remove an LI -ε :: =>x y if the
grammar provides an alternate path of
empty LIs from x to y

Transforming a grammar

Original lexicon:
Mary :: d -k

bes :: =g +k t
wills :: =v +k t

be :: =g v

laughs :: =d +k t
laughing :: =d g

laugh :: =d v

jumps :: =d +k t
jumping :: =d g

jump :: =d v

t v g d

laughs|jumps

laugh|jump

laughing|jumping

bes

wills be

|Base| 5
∑syn 24

∑phon 49
bits 565.54

Decomposition steps: laugh, jump, -ing

t v g f3 f1 d

f2

laugh

-s
-ε

-ε-ing

jump

-s

-ε
-εbes

wills be
|Base| 8
∑syn 30

∑phon 28
bits 544.62

Contraction steps: -ε :: =>f1 f3, -ε :: =>f1 f2

t v g f4 dlaugh|jump

-s
-ε

-ing

bes

wills be

|Base| 6
∑syn 21

∑phon 27
bits 415.11

Decomposition steps: -s, be

t f5 v g f4 d

f6

laugh|jump

-ε
-ε

-ing

-ε

-s will

be
-ε

|Base| 8
∑syn 23

∑phon 23
bits 431.39

Contraction step: -ε :: =>f6 v

t f5 f7 g f4 dlaugh|jump

-ε
-ε

-ing
-ε

-s will be

|Base| 7
∑syn 21

∑phon 23
bits 401.82

Deletion step: -ε :: =>f4 f5

t f5 f7 g f4 dlaugh|jump
-ε

-ing
-ε

-s will be

|Base| 7
∑syn 19

∑phon 23
bits 375.03

Final lexicon:
Mary :: d -k
laugh :: =d f4
jump :: =d f4

-s :: =>f5 +k t
-ε :: =>f7 f5
-ε :: =>f4 f7

will :: =f7 f5
be :: =g f7

-ing :: =>f4 g

Automated decomposition
• A prototype Python implementation
• Input: naive minimalist grammar over unsegmented words
• Beam search to navigate the space of grammars defined by the operations
• Cost function: size in bits + heuristics

Input: 7572.80 bits

Output: 1964.68 bits

Examples: raising and expletive it
>

<

<

<

Marysmile
=d v

to
=v to

seems
=to +k t

Mary
d -k

→

>

<

...

<

...<

seem
6

-ε
=>6 =to 3

...

seem-s
=>1 +k t

<

Mary
0

Mary
=>0 d -k

>

<

<

it<

>

<

Marysmiles
=d +k t

Mary
d -k

that
=t =e c1

seems
=c1 +k t

it
e -k

→

>

<

...

<

...<

seem
6

-ε
=>6 =c1 3

...

seem-s
=>1 +k t

it
e -k

