
Induction of Minimalist Grammars over Morphemes

Marina Ermolaeva
University of Chicago

mermolaeva@uchicago.edu

1 Introduction

Syntactic literature tends towards a big-picture
outlook, abstracting away from details such as full
specifications of lexical items or features involved
in derivations. However, a lower-level description
is required to identify differences between com-
peting analyses of the same phenomenon.

For a concrete example, consider the double ob-
ject construction (e.g. John gave Mary a book)
in English. One option is to combine the internal
arguments Mary and a book in a “small clause”
or PP-like structure and then merge the verb with
this constituent (e.g. Kayne 1984; Pesetsky 1996;
Harley and Jung 2015). The alternative is to have
the verb select the arguments one by one, giving
rise to VP-shells (Larson, 1988) and analyses in-
spired by them (Kawakami, 2018).

It is natural to ask whether it would be possible,
assuming a sufficiently rich formalism compatible
with the Minimalist framework, to choose the an-
swer to this and similar questions based on some
robust quantitative metric.

2 Minimalist grammars

Minimalist grammars (Stabler, 1997) are a natural
choice for this task. As a formalization of Chom-
sky’s (1995) Minimalist Program, they are well-
suited for implementing analyses of syntactic phe-
nomena, yet at the same time explicit regarding the
assumptions about syntactic units and operations.

Minimalist grammars define lexical items
(atomic expressions) as pairs consisting of a pho-
netic exponent and a sequence of syntactic fea-
tures (1). The first feature of each lexical item
is accessible to the operations, Merge and Move,
that target and delete matching features of oppos-
ing polarities. Merge combines two expressions
to build a new one, whereas Move is unary and
attracts a sub-expression into the specifier of the

main structure. Merge with head movement (HM)
concatenates pronounced features of the heads of
its arguments, providing a simple implementation
of concatenative morphology.

(1)

Positive polarity Negative polarity
Merge =x (right selector) x (category)

=>x (HM selector)
x= (left selector)

Move +x (licensor) -x (licensee)

Whichever expression contributed the positive fea-
ture becomes the head of the new expression. A
complete sentence is an expression with no fea-
tures left but the category t on its head. An exam-
ple lexicon is given in (2), along with the derived
tree of the sentence Mary laughs generated by it.

(2)

Mary :: d.-k

s :: =>v.+k.t

ed :: =>v.+k.t

laugh :: =d.v

jump :: =d.v

>

<

<

εlaugh
=d.v

s
=>v.+k.t

Mary
d.-k

3 Learning from dependencies

There is a substantial body of work dedicated to
learning grammars from unstructured strings; e.g.
an overview in (Clark, 2017). In particular, Yoshi-
naka (2011) presents an algorithm for learning
certain subclasses of multiple context-free gram-
mars. One can construct an equivalent Minimal-
ist grammar for any multiple context-free gram-
mar (Michaelis, 2001). However, such a grammar
would not make for a good starting point if our
goal is to compare and evaluate proposals of theo-
retical syntax, as modern syntactic theory heavily
relies on highly abstract concepts such as empty
categories, not directly visible in the raw data.

On the other hand, Siskind (1996) suggests that
rather than obtain syntactic structure from unstruc-
tured input, the learner can start the process of



grounding, or mapping linguistic units to atoms of
meaning, before learning syntax. Then it is plau-
sible that the learner can identify relations formed
by Merge and Move before knowing what lexi-
cal items or syntactic features are involved, which
gives rise to the approach to learning proposed
by Kobele et al. (2002). For each sentence the
learner is given ordered and directed dependencies
between morphemes, with suffixes marked as such
(3).

(3) Mary laugh -s
1

2 2

1

In this scenario, full lexical items (unique for each
sentence) can be recovered from the dependen-
cies. The learner’s task is to determine which fea-
ture distinctions should be kept and which need to
be collapsed, or unified. The pressure for unifi-
cation comes from a restriction on the number of
homophonous lexical items (Kanazawa, 1995).

As an illustration, consider the corpus of two
sentences, Mary laugh -s and Mary laugh -ed.
The learner assembles lexical items by assigning
a fresh feature to each dependency, assuming that
each data point is a complete sentence of cate-
gory t. The ordering of dependencies determines
whether each of them corresponds to Merge or
Move. The initial lexicon (4) contains two copies
each of Mary and laugh.

(4)
Mary :: f1.-f2

laugh :: =f1.f3

-s :: =>f3.+f2.t

Mary :: f4.-f5

laugh :: =f4.f6

-ed :: =>f6.+f5.t

The final step is to rename the corresponding fea-
tures throughout the lexicon in order to collapse
each pair of items into one. A familiar-looking
lexicon will arise if f1 and f4 are mapped to d,
f2 and f5 to k, and f3 and f6 to v. After fea-
ture unification, the grammar shrinks from six to
four lexical items, which can still derive the input
sentences.

4 Lexical item decomposition

This paper builds on (Kobele et al., 2002), aim-
ing to relax the segmentation requirement and let
the algorithm learn the structure within complex
words and any generalizations it would lead to.

Compare the lexicon in (2) with (5), which gen-
erates exactly the same set of sentences. Intu-
itively, (2) is better than (5), even though both have

the same number of lexical items. It captures the
similarities between different forms of the same
verb and recognizes the verbs’ internal structure:
two correct generalizations that (5) misses.

(5)

Mary :: d.-k

laughs :: =d.+k.t

laughed :: =d.+k.t

jumps :: =d.+k.t

jumped :: =d.+k.t

>

<

εlaughs
=d.+k.t

Mary
d.-k

This difference can be quantified in a number of
ways – naively as the number of phonetic and/or
syntactic units, length of encoding the grammar
or, taking into account the cost of encoding the
corpus, as minimum description length (Rissanen,
1978).

How to transition from a grammar over words
such as (5) to a grammar over morphemes (2)? In
linguistic terms, the latter reanalyzes the verb as
a complex head formed by head movement. This
can be generalized to a decomposition operation
(Kobele, 2018) that splits a lexical item’s syntactic
and phonetic features, producing a new item with
a fresh category (6). The morphological operation
generating w from the stem u and suffix v is de-
noted by ⊕; in the simplest case it corresponds to
string concatenation.

(6)

w :: αβxγ

>

<

αw
αβxγ

β

↓

u :: αy

v :: =>yβxγ

w = u⊕ v

>

<

<

αu
αy

v
=>yβxγ

β

If syntactic decomposition is not accompanied by
splitting the phonological material, one of the new
lexical items will be an empty functional head.
Otherwise, the algorithm has to construct a mor-
phological rule by searching for phonological sim-
ilarities across the lexicon.

Concatenative morphology has been shown to
be successfully learnable in an unsupervised sce-
nario (Goldsmith, 2001), with a possibility of us-
ing the results to infer the syntactic category of
words (Hu et al., 2005); the problem of irregular
and non-concatenative patterns (such as sings vs.
sang) is also addressed in the literature (e.g. Lee



and Goldsmith 2014). Thus, in our case the learner
has access to two separate sources of information
– syntactic features and phonological patterns – to
base its decisions on.

Multiple lexical items sharing a sub-sequence
of syntactic features can be decomposed simul-
taneously, factoring out the shared features. The
pressure to do this comes from a reduced cost
in features; replacing repeating sequences is a
well-known compression technique (cf. Nevill-
Manning et al. 1994).

5 Towards a grammar over morphemes

The following example shows how a naive word-
based grammar can be transformed into a lin-
guistically motivated grammar over morphemes
via decomposition and feature unification. Let
the learner start with dependency structures (over
non-segmented words) for the following eight sen-
tences:

(7)

Mary laughs

Mary is laughing

Mary will laugh

Mary will be laughing

Mary jumps

Mary is jumping

Mary will jump

Mary will be jumping

From this data set, the algorithm discussed in sec-
tion 3 can extract the lexical items shown in (8) by
collapsing homophonous items.

(8)

Mary :: d.-k

is :: =g.+k.t

will :: =v.+k.t

be :: =g.v

laughs :: =d.+k.t

laughing :: =d.g

laugh :: =d.v

jumps :: =d.+k.t

jumping :: =d.g

jump :: =d.v

Merge dependencies in this lexicon can be conve-
niently visualized as a directed graph. In (9) ver-
tices are category features; each edge corresponds
to a lexical item and connects the category of its
complement (first phrase it selects) to that of its
own.

(9) t v g d

laughs|jumps

laugh|jump

laughing|jumping

is

will be

We begin by decomposing lexical verbs, produc-
ing the lexicon in (10). The three lexical items
laughs, laughing, and laugh are a valid target for

decomposition; and so are jumps, jumping, and
jump. Both transitions are motivated both phono-
logically (factoring out a common prefix) and syn-
tactically (splitting three feature bundles starting
with =d).

(10)

Mary :: d.-k

is :: =g.+k.t

will :: =v.+k.t

be :: =g.v

laugh :: =d.V1

jump :: =d.V2

s :: =>V1.+k.t

s :: =>V2.+k.t

ing :: =>V1.g

ing :: =>V2.g

ε :: =>V1.v

ε :: =>V2.v

t v g V1 d

V2

laugh

s

ε

ing

jump

s

ε

ing
is

will be

laughing = laugh⊕ ing

jumping = jump⊕ ing

laughs = laugh⊕ s

jumps = jump⊕ s

This move created two copies each of s, ing, and
ε. All of them can be conflated by unifying a sin-
gle pair of features, V1 and V2, producing a much
smaller grammar (11).

(11)

Mary :: d.-k

is :: =g.+k.t

will :: =v.+k.t

be :: =g.v

laugh :: =d.V

jump :: =d.V

s :: =V.+k.t

ing :: =V.g

ε :: =V.v

t v g V dlaugh|jump

s

ε

ing

is

will be

laughing = laugh⊕ ing

jumping = jump⊕ ing

laughs = laugh⊕ s

jumps = jump⊕ s

The next step targets another repeated sequence of
syntactic features: +d.t. This essentially creates
a dedicated Tense projection, which hosts the sur-
face position of the subject (12). At this point,
concatenation is no longer sufficient for the mor-
phological rules, highlighting the need for a richer
theory of morphology.

(12)

Mary :: d.-k

s :: =x.+k.t

be :: =g.x

will :: =v.x

be :: =g.v

laugh :: =d.V

jump :: =d.V

ε :: =V.x

ing :: =V.g

ε :: =V.v



t x v g V dlaugh|jump

ε

ε

ing

be

s will be

laughing = laugh⊕ ing

jumping = jump⊕ ing

laughs = laugh⊕ s

jumps = jump⊕ s

is = be⊕ s

will = will⊕ s

This grammar still contains two copies of be.
While they could be collapsed by unifying v and
x, this move would cause the grammar to over-
generate, producing, for example, the set of un-
grammatical sentences Mary (will)+ be laughing.
However, adding an edge (empty head) from v to
x would make two of these items redundant with-
out generating any unwanted sentences (13). This
move can be thought of as decomposing be ::
=g.x into be :: =>g.z and ε :: =z.x, where z
is a fresh feature, and then unifying z with v. The
same is applicable to ε :: =V.x and ε :: =V.v.

(13)

Mary :: d.-k

s :: =x.+k.t

ε :: =v.x

will :: =v.x

be :: =g.v

laugh :: =d.V

jump :: =d.V

ing :: =V.g

ε :: =V.v

t x v g V dlaugh|jump

ε

ε

ings will be

laughing = laugh⊕ ing

jumping = jump⊕ ing

laughs = laugh⊕ s

jumps = jump⊕ s

is = be⊕ s

will = will⊕ s

We have shown how a Minimalist grammar can
be compressed in a way compatible with linguistic
theory through repeated application of lexical item
decomposition and feature unification. Together
they offer a principled way to identify repeating
patterns in the lexicon, instantiate them as new lex-
ical items, and collapse any emerging duplicates.
Our current work in progress involves building a
learning algorithm for syntax with these two op-
erations at its core. This approach would allow to
derive (potentially empty) functional heads, pro-
ducing linguistically motivated generalizations.

References
Noam Chomsky. 1995. The Minimalist Program. MIT

Press.

Alexander Clark. 2017. Computational learning of
syntax. Annual Review of Linguistics, 3:107–123.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
linguistics, 27(2):153–198.

Heidi Harley and Hyun Kyoung Jung. 2015. In support
of the pHAVE analysis of the double object construc-
tion. Linguistic inquiry, 46(4):703–730.

Yu Hu, Irina Matveeva, John Goldsmith, and Colin
Sprague. 2005. Using morphology and syntax to-
gether in unsupervised learning. In Proceedings of
the Workshop on Psychocomputational Models of
Human Language Acquisition, pages 20–27. Asso-
ciation for Computational Linguistics.

Makoto Kanazawa. 1995. Learnable Classes of Cate-
gorial Grammars. Ph.D. thesis, Stanford University.

Masahiro Kawakami. 2018. Double object construc-
tions: Against the small clause analysis. Journal of
Humanities and Social Sciences, 45:209–226.

Richard S. Kayne. 1984. Connectedness and Binary
Branching. Foris, Dordrecht.

Gregory M. Kobele. 2018. Lexical decomposition.
Computational Syntax lecture notes.

Gregory M. Kobele, Travis Collier, Charles Taylor, and
Edward P. Stabler. 2002. Learning mirror theory. In
Proceedings of TAG+ 6, pages 66–73.

Richard K Larson. 1988. On the double object con-
struction. Linguistic inquiry, 19(3):335–391.

Jackson Lee and John Goldsmith. 2014. Automatic
morphological alignment and clustering. Technical
report, Technical report TR-2014-07, Department of
Computer Science, University of Chicago.

Jens Michaelis. 2001. On formal properties of mini-
malist grammars. Ph.D. thesis, U of Potsdam.

Craig G Nevill-Manning, Ian H Witten, and David L
Maulsby. 1994. Compression by induction of hierar-
chical grammars. In Proceedings of DCC’94, pages
244–253.

David Michael Pesetsky. 1996. Zero syntax: Experi-
encers and cascades. MIT press.

Jorma Rissanen. 1978. Modeling by shortest data de-
scription. Automatica, 14(5):465–471.

Jeffrey Mark Siskind. 1996. A computational study
of cross-situational techniques for learning word-to-
meaning mappings. Cognition, 61(1-2):39–91.

Edward P. Stabler. 1997. Derivational minimalism. In
Christian Retoré, editor, Selected Papers from LACL
’96, pages 68–95. Springer Berlin Heidelberg.

Ryo Yoshinaka. 2011. Efficient learning of multiple
context-free languages with multidimensional sub-
stitutability from positive data. Theoretical Com-
puter Science, 412(19):1821–1831.


