
An adaptable morphological parser for agglutinative languages

Marina Ermolaeva
Lomonosov Moscow State University
marinkaermolaeva@gmail.com

Abstract

The paper reports the state of the ongoing work on
creating an adaptable morphological parser for
various agglutinative languages. A hybrid approach
involving methods typically used for
non-agglutinative languages is proposed. We explain
the design of a working prototype for inflectional
nominal morphology and demonstrate its work with
an implementation for Turkish language. An
additional experiment of adapting the parser to Buryat
(Mongolic family) is discussed.1

1 Introduction

The most obvious way to perform morphological
parsing is to make a list of all possible
morphological variants of each word. This
method has been successfully used for non-
agglutinative languages, e.g. (Segalovich 2003)
for Russian, Polish and English.

Agglutinative languages pose a much
more complex task, since the number of possible
forms of a single word is theoretically infinite
(Jurafsky and Martin 2000). Parsing languages
like Turkish often involves designing
complicated finite-state machines where each
transition corresponds to a single affix
(Hankamer 1986; Eryiğit and Adalı 2004;
Çöltekin 2010; Sak et al. 2009; Şahin et al.
2013). While these systems can perform
extremely well, a considerable redesigning of the
whole system is required in order to implement a
new language or to take care of a few more
affixes.

1 This is a slightly altered version of the following

paper:
Marina Ermolaeva. 2014. An adaptable

morphological parser for agglutinative languages. In:
Proceedings of the First Italian Conference on
Computational Linguistics CLiC-it 2014 & the Fourth
International Workshop EVALITA 2014. Vol. I. Roberto
Basili, Alessandro Lenci, Bernardo Magnini (eds.). pp.
164-168. Pisa University Press.

The proposed approach combines both
methods mentioned above. A simple finite-state
machine allows to split up the set of possible
affixes, producing a finite and relatively small set
of sequences that can be easily stored in a
dictionary.

Most systems created for parsing
agglutinative languages, starting with
(Hankamer 1986) and (Oflazer 1994), process
words from left to right: first stem candidates are
found in a lexicon, then the remaining part is
analyzed. The system presented in this paper
applies the right-to-left method (cf. (Eryiğit and
Adalı 2004)): affixes are found in the first place.
It can ultimately work without a lexicon, in
which case the remaining part of the word is
assumed to be the stem; to improve precision of
parsing, it is possible to compare it to stems
contained in a lexicon. A major advantage of
right-to-left parsing is the ability to process
words with unknown stems without additional
computations.

Multi-language systems (Akın and Akın
2007; Arkhangelskiy 2012) are a relatively new
tendency. With the hybrid approach mentioned
above, the proposed system fits within this trend.
As the research is still in progress, the working
prototype of the parser (written in Python
language) is currently restricted to nominal
inflectional morphology. Within this scope, it has
been implemented for Turkish; an additional
experiment with Buryat language is discussed in
the section 5.

2 Turkish challenges

The complexity of Turkish morphology is easily
perceptible in nouns. The word stem itself can be
complex. Compounding of “adjective + noun” or
“noun + noun” structure is a productive way of
word formation, which means that this problem
cannot be solved by listing all known compounds
in a dictionary.

Due to the vowel harmony and
assimilation rules, most affixes have multiple
allomorphs distributed complementarily
according to the phonological context; e.g. the
locative case marker has 4 forms (two harmonic
variants of the vowel and a voiced/voiceless
alternation).

A nominal stem can receive number,
possession and case affixes. Moreover, certain
other affixes (e.g. copular and person markers)
can attach to these forms to form predicates:

(1) ev-ler-imiz-de-ymiş-ler2
home-PL-P1PL-LOC-COP.EV-3PL
Apparently they are/were at our homes.

An interesting option is the affix -ki,
which can be recursively attached to a nominal
form containing a genitive or locative marker:

(2) ev-de-ki-ler-in-ki
home-LOC-KI1-PL-GEN-KI23
the one belonging to those at home

3 System design

3.1 Data representation

The language-specific data necessary to
implement a new language includes:
• Phonology description (phoneme inventory,

harmony, etc.)
• Morphology description: a list of all

allomorphs. For each allomorph its category,
gloss and possible (morpho)phonological
context is stored.

• Lexicon: a list of stems with part-of-speech
tags. If a stem has multiple phonological
variants, they are stored as separate entries
along with data about contexts they can be
used in. The lexicon is optional, yet it
significantly improves precision of parsing.

The parser itself is language-independent
and does not require any custom coding to
implement new languages.

For Turkish, the system uses a relatively
small lexicon of 16000 nominal and adjectival
stems. The modest size of the lexicon is mostly
compensated by the ability to analyze
morphology even if the stem is absent in the

2 Examples (1)-(4) are from (Göksel and Kerslake

2005)
3 According to Hankamer (2004), -ki has different

properties when attached to a locative form and to a genitive
form; therefore, two separate -ki’s are postulated. In this
paper, they are referred to as KI1 and KI2 respectively.

lexicon. In this case, parses for all possible stems
are output.

The exceedingly long morpheme
sequences that can attach to a stem are split up
into shorter chains. The whole set of grammatical
categories is represented as a set of slots, each of
them containing categories that have strictly
fixed order(s):
• two stem slots (for nominal compounds)
• noun inflection
• noun loop (the recursive suffix -ki)
• nominal verb suffixes (e.g. copulas and

adverbial markers)
The number and order of categories

within slots can be changed without modifying
the system itself, which simplifies implementing
new languages.

For each slot, a list of possible affix
sequences is obtained. At this step all the checks
of morphotactic and phonological compatibility
of the affixes within a slot are performed, so they
do not have to be applied at runtime. The lists are
converted into tries in order to speed up the
search. All the sequences are stored inverted, so
that the trie could be searched during the parsing
process. A fragment of the nominal morphology
trie and the sequences compatible with it are
shown in Figure 1 and Table 1 respectively.

Figure 1. A fragment of the nominal affix trie

Sequence Gloss Context

-∅-∅-da -SG-NPS-LOC
after vowels and
voiced consonants

-∅-un-da -SG-P2SG-LOC after consonants
-∅-n-da -SG-P2SG-LOC after vowels
-lar-ın-da -PL-P2SG-LOC (no restrictions)
-∅-ın-da -SG-P2SG-LOC after consonants
-lar-∅-da -PL-NPS-LOC (no restrictions)

Table 1. Sequence list for Figure 1

Similarly, the lexicon is stored as a set of
tries. Stems are also inverted, in order to
effectively find stem boundaries within
compounds. Stems with multiple phonological
variants are included in the lexicon as a set of

separate entries; each entry receives special
labels determining possible phonological
context. For instance, his “sensation” appears in
the form hiss before vowels and in the
vocabulary form in other cases. A fragment of
the lexicon trie is represented in Figure 2; it
corresponds to the list of stems in Table 2.

Figure 2. A fragment of the lexicon trie

Sequence Translation(s) Context
dekan dean, provost (no restrictions)
bezgin exhausted (no restrictions)
dizgin bit, bridle, … (no restrictions)

his chord, feel, …
before consonants;
at the word’s end

hiss chord, feel, … before vowels
Table 2. Sequence list for Figure 2

3.2 Parsing algorithm

The transitions between slots are performed via a
(very simple) finite-state machine shown in
Figure 3:

Figure 3. The finite-state machine

Each transition corresponds to a
sequence of affixes rather than to a single affix.
Each transition involves finding all possible
candidate sequences using an appropriate stem or
affix trie. Checks of compatibility are only done
between slot sequences; at other points, no
linguistic information is used. The simplified
algorithm of analysis includes following steps:

1. Find all affix sequences that match the input
word form.

2. For each hypothetical parse, try to find a stem
in the lexicon using the unglossed part at the
word’s left end. If a stem is found and there
are no “leftover” characters at the left end of
the word, output all such parses. If a stem is
found, yet some part of the word remains
unglossed, go to step 3. If no stem is found at
all, assume that the stem is unknown and
output all hypothetical parses.

3. Assume that the stem is compound; for the
remaining unglossed part, try to find another
stem. If a stem is found and no unprocessed
characters are left, output all such parses. Else
discard the hypothetical compound parses and
output all parses with no stem found.

Some examples of different decisions
made by the algorithm are demonstrated below.
In (3), the input is ambiguous. For two of the
possible stem-affix boundaries (adam-dı and
ada-mdı), a known stem has been found in the
lexicon:

(3) input: adamdı
decision: single stem
output:
1. adam-∅-∅-∅-dı-∅

man-SG-NPS-NOM-COP.PST-3
2. ada-∅-m-∅-dı-∅

island-SG-P1SG-NOM-COP.PST-3

Even if there is no single stem matching
the input in the lexicon, like in (4), a suitable
parse might be found under the assumption that
there is an additional boundary within the stem:

(4) input: kızarkadaş
decision: compound
output:
1. kız-arkadaş-∅-∅-∅

girl-friend-SG-NPS-NOM
2. kız-arkadaş-∅-∅-∅-∅-∅

girl-friend-SG-NPS-NOM-COP.PRS-3

Finally, the pseudo-word in (5) has two
feasible stem-affix boundaries (with hypothetical
stems fefe and fef), but no single or compound
match in the lexicon for any of them. The stem is
considered unknown, and all parses are output:

(5) input: fefe
decision: unknown stem
output:
1. fef-∅-∅-e

FEF-SG-NPS-DAT
2. fef-∅-∅-e-∅-∅

FEF-SG-NPS-DAT-COP.PRS-3

3. fefe-∅-∅-∅
FEF-SG-NPS-NOM

4. fefe-∅-∅-∅-∅-∅
FEF-SG-NPS-NOM-COP.PRS-3

4 Evaluation

Turkish is known for a significant level of
morphological ambiguity. For example, it is
impossible to disambiguate (6) and (7) without
appealing to the context:

(6) ev-in
house-GEN
‘of the house’

(7) ev-in
house-P2SG
‘your house’

Since the system does not perform
disambiguation, it must output all possible parses
for each word. To take this into account, the
evaluation method described in (Paroubek 2007)
has been used. First, precision (P) and recall (R)
values for each word wi in the test sample are
obtained:

; ,

where ti is the number of parses for wi output by
the parser and ri is the number of correct parses.

After that, mean values for the whole
sample are calculated. As most derivational
affixes are currently not regarded, the internal
structure of the stem was not considered. A parse
was accepted if all inflectional affixes had been
correctly found and properly labelled.

The Turkish implementation was
evaluated with a testing sample of 300 nouns and
noun-based predicates and yielded precision and
recall values of 94,8% and 96,2% respectively.

5 Implementing new languages

Since Turkic languages are quite similar among
themselves, applying the parser to a non-Turkic
agglutinative language can help test its
universality.
As an experiment, a small part of Buryat
morphology has been modelled. Buryat language
poses more challenges than Turkish in some
respects. The processing is complicated by a vast
number of (morpho)phonological variants of
both stems and affixes, more complex
phonological rules and a harmony system with
subtler distinctions (e.g. a distinction between
vowels in different syllables).

Crucially, the Buryat implementation did
not require any custom coding or
language-specific modifications of the parser
itself; the only custom elements were phonology
description, morpheme list and dictionary. The
morphology model was evaluated on a small
sample of Buryat nouns, resulting in precision
value of approximately 91% and recall value of
96%.

6 Future work

At the moment, the top-importance task is lifting
the temporary limitations of the parser by
implementing other parts of speech (finite and
non-finite verb forms, pronouns, postpositions
etc.) and derivational suffixes.

Although the slot system described in
3.1 has been sufficient for both Turkish and
Buryat, other agglutinative languages may
require more flexibility. This can be achieved
either by adding more slots (thus making the slot
system nearly universal) or by providing a way
to derive the slot system automatically, from
plain text or a corpus of tagged texts; the latter
solution would also considerably reduce the
amount of work that has to be done manually.

Another direction of future work
involves integrating the parser into a more
complex system. DIRETRA, an engine for
Turkish-to-English direct translation, is being
developed on the base of the parser (Aksënova
and Ermolaeva in prep.). The primary goal is to
provide a word-for-word translation of a given
text, reflecting the morphological phenomena of
the source language as precisely as possible. The
gloss lines output by the parser are processed by
the other modules of the system and ultimately
transformed into text representations in the target
language:

input adamlarınkiler
parser output man-PL-GEN-KI2-PL
DIRETRA output ones.owned.by.men

Table 3. An example of DIRETRA output

Though the system is being designed for
Turkish, the next step planned is to implement
other Turkic languages as well.

Abbreviations

1 – first person, 2 – second person, 3 – third person,
COP.EV – evidential copula, COP.PRS – present
tense copula, COP.PST – past tense copula, DAT –
dative, GEN – genitive, KI1 – -ki suffix after locative,
KI2 – -ki suffix after genitive, LOC – locative, NOM

– nominative, NPS – non-possession, P – possession,
PL – plural, SG – singular.

References

Ahmet Afşın Akın and Mehmet Dündar Akın. 2007.
Zemberek, an open source NLP framework for
Turkic Languages.

Alëna Aksënova and Marina Ermolaeva. In prep.
DIRETRA, a customizable direct translation
system: first sketches. In: Proceedings of Translata
II.

Timofey Arkhangelskiy. 2012. Printsipy postrojenija
morfologicheskogo parsera dlja raznostrukturnyx
jazykov [Principles of building a morphological
parser for different-structure languages] Abstract of
thesis cand. phil. sci. Moscow.

Çağrı Çöltekin. 2010. A Freely Available
Morphological Analyzer for Turkish. In:
Proceedings of the 7th International Conference on
Language Resources and Evaluation (LREC2010),
Valletta, Malta.

Gülşen Eryiğit and Eşref Adalı. 2004. An Affix
Stripping Morphological Analyzer for Turkish. In:
IASTED International Multi-Conference on
Artificial Intelligence and Applications. Innsbruck,
Austria, 299-304.

Aslı Göksel and Celia Kerslake. 2005. Turkish: A
Comprehensive Grammar.

Jorge Hankamer. 1986. Finite state morphology and
left-to-right phonology. In: Proceedings of the
Fifth West Coast Conference on Formal
Linguistics, Stanford, CA, 29-34.

Jorge Hankamer. 2004. Why there are two ki's in
Turkish. In: Imer and Dogan, eds., Current
Research in Turkish Linguistics, Eastern
Mediterranean University Press, 13-25.

Daniel Jurafsky and James H. Martin. 2000. Speech
and language processing: an introduction to natural
language processing, computational linguistics, and
speech recognition. Upper Saddle River, N.J.:
Prentice Hall.

Kemal Oflazer. 1994. Two-level description of
Turkish morphology. In Literary and Linguistic
Computing, vol. 9, no. 2, 137-148.

Patrick Paroubek. 2007. Chapter 4 - Evaluating Part
Of Speech Tagging and Parsing. In: Evaluation of
Text and Speech Systems, eds. Laila Dybkjær,
Holmer Hemsen, Wolfgang Minker, series: Text,
Speech and Language Technology, vol. 36, Kluwer
Academic Publisher, 97-116.

Muhammet Şahin, Umut Sulubacak and Gülsen
Eryigit. 2013. Redefinition Of Turkish
Morphology Using Flag Diacritics. In: Proceedings

of the Tenth Symposium on Natural Language
Processing (SNLP-2013).

Haşim Sak, Tunga Güngör and Murat Saraçlar. 2009.
A stochastic finite-state morphological parser for
Turkish. In: Proceedings of the ACL-IJCNLP 2009
Conference Short Papers, August 04-04, 2009,
Suntec, Singapore.

Ilya Segalovich. 2003. A Fast Morphological
Algorithm with Unknown Word Guessing Induced
by a Dictionary for a Web Search Engine.
MLMTA, 273-280. CSREA Press.

