Distributed Morphology as a regular relation

Marina Ermolaeva mermolaeva@uchicago.edu

Daniel Edmiston

danedmiston@uchicago.edu

Introduction

- Implicit claim of DM: syntax all the way down; morphology over trees
- DM can in spirit be treated as a tree transducer, but how similar are morphology and syntax?
- Morphology appears (at most) regular; can we get this for free?
- Work in NLP treats morphology with finite-state methods (e.g. KARTTUNEN ET AL. 1992); syntax cannot be done this way (SHIEBER 1985)

(morphology vs. syntax)

- We reshape Distributed Morphology (DM, Halle & Marantz 1993) to operate over strings rather than trees
- Principle change: Flatten structure to strings before morphology

Syntax-Morphology interface

Framework: Minimalist Grammars (MGs, STABLER 1997)

- A set of syntactic features Syn
- A **lexicon**: $Lex \subset \Sigma^* Syn^*$, where Σ is a set of pronounced segments
- Two structure-building operations:

Modification 1: syntax assembles morphological words (separated by #)

- Lowering and Head Movement as *merge* with concatenation of heads
- Mirror Theory (BRODY 1997, KOBELE 2002):
 strong and weak nodes
- Three subtypes of selector features:
- =f (normal *merge*)
- =>f (strong node; merge + Head Movement)
- <=f (weak node; merge + Lowering)

Modification 2: full separation of syntax and phonology

- Feature structures:
- $FS = \mathcal{P}(M) \times (\Sigma \cup \{\epsilon, None\})$, where *none* denotes the "placeholder" exponent and M is a finite set of morphological features;

For $s = \langle x, y \rangle \in FS$, feat(s) = x and exp(s) = y.

• Redefining lexicon: $Lex \subset \{s \mid s \in FS \& exp(s) = None\} Syn^*$

Morphological rules

 Morphological rules operate on underspecified feature structures:

 $FS_U = \mathcal{P}(M) \times (\Sigma \cup \{\epsilon, None, ?\}),$ where ? stands for "any exponent"

- Kaplan & Kay 1994:
- Rewriting rules that do not overwrite their own output define regular relations over strings;
- Simultaneous application as batch rules, ordered rules as composition of regular relations.

Analogy: phonological rules

A rule in feature matrix notation is equivalent to a set of rules over atomic symbols. For instance, $[-syl, +voi] \rightarrow [-voi] \ / \ _ \ [-voi]$ abbreviates multiple rules:

 $b \to p / _(p | t | k), d \to t / _(p | t | k), ...$

- Vocabulary Insertion (VI): for $1 \le i \le |A|$, $1 \le j \le |B|$, $exp(A_i) = None$, $exp(B_j) \ne None$, $feat(A_i) = feat(B_j)$; |A| = 1, $|B| \ge 1$.
- Readjustment: for $1 \le i \le |A|$, $1 \le j \le |B|$, $exp(A_i) \ne None$, $exp(B_j) \ne None$, $feat(A_i) = feat(B_j)$.

Cyclicity and Rewriting

- Bobaljik 2000:
- Cyclicity: VI starts at the root and proceeds outwards
- Rewriting: VI deletes morphosyntactic features it expresses
- Outward sensitivity to morphosyntactic features; inward sensitivity to morphophonological features

- Simulating cyclicity with rule ordering: **Hierarchy of Projections** (HoP, Adger 2003) Clausal: $V \langle v \langle (Pass) (Prog) \langle (Perf) \langle (Neg) \langle T \langle C Nominal: N \langle n \langle (Poss) \rangle D$
- Are these constraints desirable?
- Multiple counter-examples
- SVENONIUS 2012:
- reconsider Cyclicity?
- Gribanova & Harizanov 2017:
- eliminate Rewriting?
- DEAL & WOLF 2017:
- weaken Rewriting to Monotonicity:
 VI strictly adds information
- inside-out insertion of cycles (pproxphases)
- VI inside cycles in any order
- Cyclicity as ordered rules over strings: follow HoP, allowing for mismatches

Inching toward Word & Paradigm

- Karttunen 2003:
- Paradigm Function Morphology (PFM, STUMP 2001) can be restated as regular relations
- PFM can be viewed as series of ordered rewrite rules
 ... and transformed into FST via rule composition

- PFM rules encode prefix/suffix distinction
- In string-based DM, ordering is decided by the string fed to morphology

However, external dress hides essence of each formalization:
 both are faithfully reducible to FSTs

Discussion

- Explanation for regular-ness of morphology
 - structures flatten between
 syntax and morphology
 super-regular syntax,
 (sub)regular morphology

- Restriction to regular relations instead of limiting size of windows over trees (e.g. spans, $\rm MERCHANT~2015)$
- formal grounding for limiting context
- properties well understood, including efficient parsing and generation
- Apparent cyclicity effects treated as rule ordering
 enough flexibility is retained to handle direct counter-examples
- \bullet Elimination of trees + reliance of rule orderings moves DM closer to W&P
- formalization shows frameworks more alike than different

References: Adder, D. 2003. Core syntax: a minimalist approach. • Bobaljik, J. D. 2000. The ins and outs of contextual allomorphy. • Bonami, O., and G. Stump. 2016. Paradigm function morphology. • Brody. M. 1997. Mirror theory. • Deal, A. R., and M. Wolf. 2017. Outward-sensitive phonologically-conditioned allomorphy in Nez Perce. • Gribanova, V., and B. Harizanov. 2017. Locality and directionality in inward-sensitive allomorphy: Russian and Bulgarian. • Halle, M., and A. Marantz. 1993. Distributed Morphology and the pieces of inflection. • Kaplan, R. M., and M. Kay. 1994. Regular models of phonological rule systems. • Karttunen, L., R. M. Kaplan, and A. Zaenen. 1992. Two-level morphology with composition. • Kobele, G. M. 2002. Formalizing Mirror Theory. • Karttunen, L. 2003. Computing with Realizational Morphology. • Merchant, J. 2015. How much context is enough? • Shieber, S. M. 1985. Evidence against the context-freeness of natural language. • Stabler, E. P. 1997. Derivational minimalism. • Stump, G. T. 2001. Inflectional Morphology: A theory of paradigm structure.