

EXTRACTING MORPHOPHONOLOGY FROM SMALL CORPORA

Marina Ermolaeva mermolaeva@uchicago.edu

Introduction

• What can be learned from a **small** sample of glossed words?

- alternations behind allomorphy distribution of allomorphs
- missing morphs
- instances of mislabeling
- Which of these tasks can be accomplished **automatically**...
- ... and how much data is required?

 Case study: Mishar dialect of Tatar, Turkic/Kipchak (LYUTIKOVA et al. 2007)

	Tokens
Total words	3090
Polymorphemic words	1736
Gloss-tagged morphemes	2850

Intermediate results

• Started with 55 gloss tags and 160 distinct morphs

- Converged in **3 iterations**
- All morphs collapsed into 85 groups • Discovered **12 alternations**
 - (10) ---- ATR (11) ---- PL (13) ---- COMP ---- Group 0 ---- Group 0 ---- Group [['s' '**%**' 'z'] [['n' 'ä' 'r'] [['d' 'i' 'p']] ['s' 'e' 'z']] ---- Group 1 [['l' 'e'] ['1' '%']] ---- Group 2

Correct	$ \{ d, n, t \}, \{ d, t \}, \{ \emptyset, k, g \}, \{ l, n \}, \\ \{ k, g \}, \{ \emptyset, e, \gamma \}, \{ a, \ddot{a} \}, \{ e, \gamma \} $
	$\{k, g\}, \{\emptyset, e, \gamma\}, \{a, \ddot{a}\}, \{e, \gamma\}$
Incomplete	$\{\emptyset, \gamma\}, \{\emptyset, \ddot{a}\}$
Incorrect	$\{s, g\}, \{n, \eta\}$

---- Group O ['n' 'a' 'r'] ---- Group 1 [['r' 'ä' 'k'] ['r' 'a' 'k']]

(Morpho)phonological phenomena

• Vowel harmony:

	[<mark>—BK</mark> [—RND]	[<mark>−BK</mark> [+RND]	$\begin{bmatrix} +BK\\ -RND \end{bmatrix}$	$\begin{bmatrix} +BK \\ +RND \end{bmatrix}$
$\begin{bmatrix} +HI \\ -LO \end{bmatrix}$	i	ü	уj	u
[—HI [—LO]	е		Y	
$\begin{bmatrix} -HI \\ +LO \end{bmatrix}$	ä		a	

bala-l**a**r-**s**b**s**z-g**a** (1)a. child-PL-P1PL-DAT

> täräz-l**ä**r-ebez-g**ä** b. window-PL-P1PL-DAT

Non-canonical harmony:

(2)tarix-**s** a.

- history-P3
- činovnig-**x** b. official-P3

• Local processes:

(3)	a.	kibet- tän	b.	kyz- dan	С.	uryn- nan
		shop-ABL		girl-ABL		place-ABL
(4)	a.	jyrt- ta	b.	kyz- da	C.	$ ext{ten-}d\ddot{\mathbf{a}}$
		yard-LOC		girl-LOC		night-LOC
(5)	a.	at-lar	b.	kyz-lar	C.	ujyn- nar
		horse-PL		girl-PL		game-PL

Interacting processes:

(6)	a.	bala-m b .	set-em C.	k yz- $\mathbf{y}\mathbf{m}$
		child-P1SG	milk-P1SG	girl-P1SG

Non-canonical voicing:

7)	a.	i- kän	b.	di- gän
		AUX-PFCT		speak-PFCT

 Allomorphy for morphosyntactic features: (8)a. bašl-a-r

b. bul-m-a-s be-NEG-ST-POT begin-ST-POT

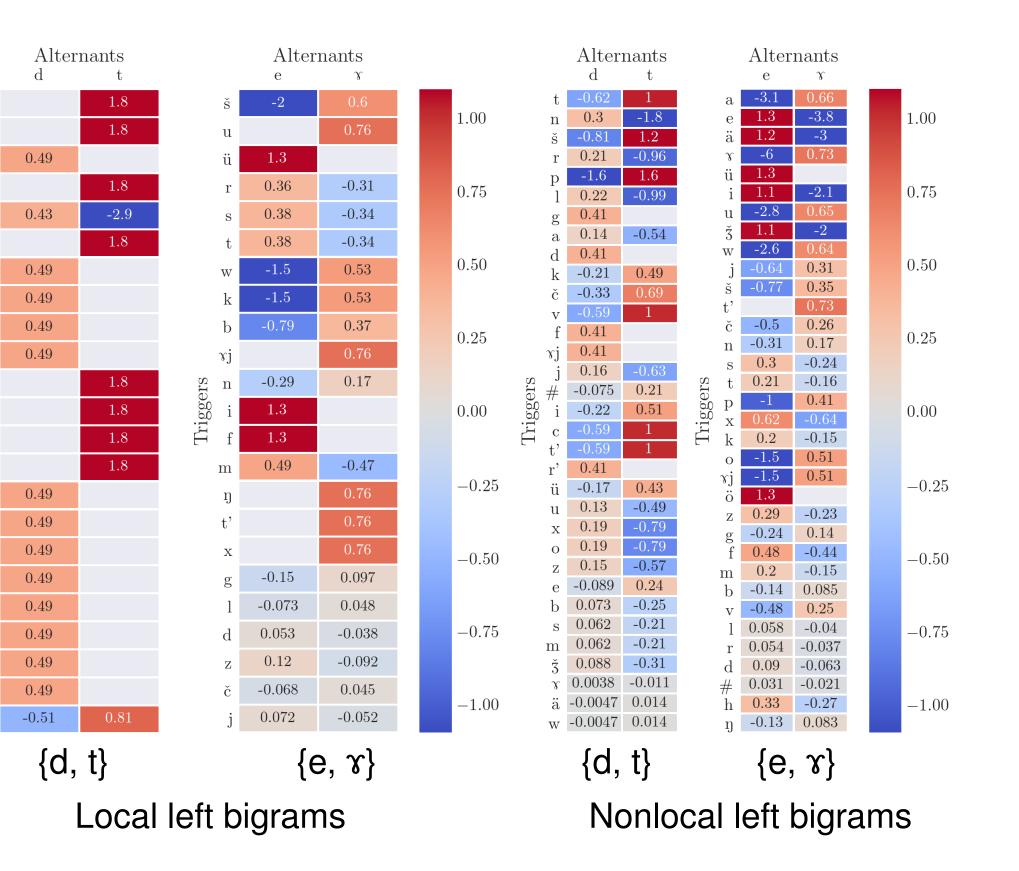
String differences

[['g' 'e'] ['g' '**%**'] ['k' 'e']]

['l' 'ä' 'r']

['l' 'a' 'r']]

---- Group O [['r' 'a' 'k']]


Contexts and PMI

• A **rule** consists of three components: • a set of triggers for each alternant • a set of transparent characters • directionality: left or right

 Pointwise mutual information: measure of attraction between a pair of events (BOUMA 2009) $PMI_A(s;a) = \log_2 \frac{p(a,s)}{p(a)p(s)}$ • PMI values correctly pair alternants with their trigger characters...

• Bigrams for $\{e, \gamma\}$ in #baš γ n#:

	Left	Right
Local	šγ	хŊ
Nonlocal	#r, br, ar, šr	אָץ, א∰

• GOLDSMITH 2011: difference and **commonality** operators over strings and **paradigms** (sets of strings)

Right difference: Left difference: $\frac{\text{jumps}}{\text{jumping}}R = \frac{\text{s}}{\text{ing}} \qquad \frac{\text{like}}{\text{dislike}}L = \frac{\emptyset}{\text{dis}}$

• A paradigm is **regular** iff its self-difference array has a single common numerator in each row and all its commonalities are identical

	jump	jumps	jumped	jumping		jump	jumps	jumped
jump		<u>Ø</u> s	$\frac{\emptyset}{\mathrm{ed}}$	$\frac{\emptyset}{\mathrm{ing}}$	jump		jump	jump
jumps	$\frac{s}{\emptyset}$		$\frac{s}{ed}$	$\frac{s}{ing}$	jumps	jump		jump
jumped	$\frac{\mathrm{ed}}{\emptyset}$	$\frac{\mathrm{ed}}{\mathrm{s}}$		$\frac{\mathrm{ed}}{\mathrm{ing}}$	jumped	jump	jump	
jumping	$\frac{\mathrm{ing}}{\emptyset}$	$\frac{\mathrm{ing}}{\mathrm{s}}$	$\frac{\mathrm{ing}}{\mathrm{ed}}$	Ū	jumpinę	j jump	jump	jump

	try	tries	tried	trying		try	tries	tried	trying
try		y ies	$\frac{y}{ied}$	$\frac{\emptyset}{\mathrm{ing}}$	try		tr	tr	try
tries	$\frac{ies}{v}$		$\frac{s}{d}$	ies ying	tries	tr		trie	tr
tried	$\frac{\text{ied}}{\text{v}}$	$\frac{\mathrm{d}}{\mathrm{s}}$		$\frac{\text{ied}}{\text{ying}}$	tried	tr	trie		tr
trying	$\frac{\log}{\emptyset}$	ying ies	<u>ying</u> ied	. 0	trying	try	tr	tr	

Extracting alternations

• An **alternation** is the set of numerators in a self-difference array with the following properties:

 regular (ignoring any known alternations) short differences (up to one character) nonzero commonalities

• Extraction step: find alternations between groups within sets

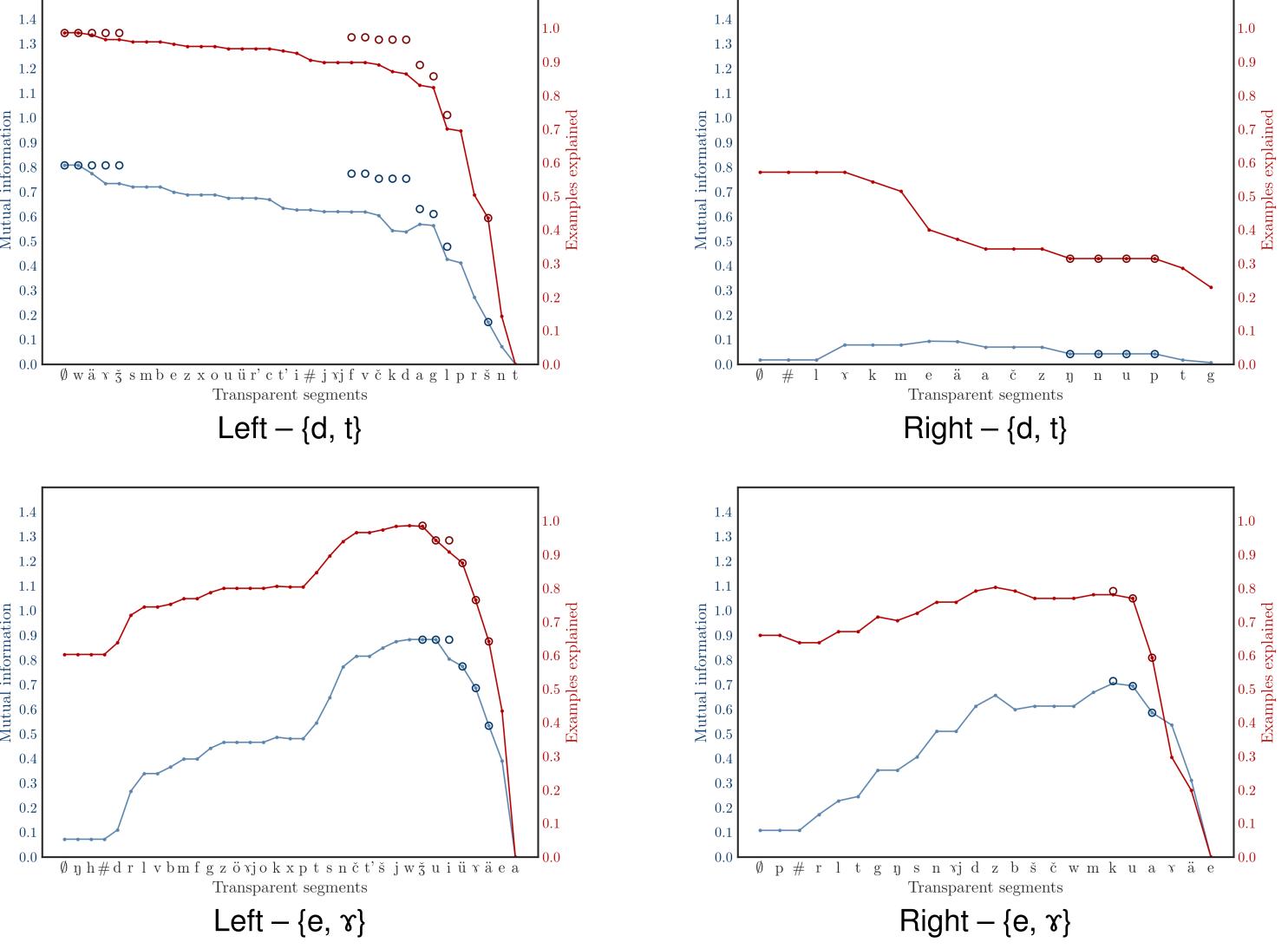
- Preprocessing: arrange morphs (instances of morphemes) into sets by gloss, each in its own **group**
 - (9) Q $\left\{ \left[m \ x \right], \ \left[m \ e \right] \right\}$ PST: $\{[d x], [d e], [t x], [t e]\}$ P1PL: {[b e z], [e b e z], [r b r z]}

... if the directionality is correct

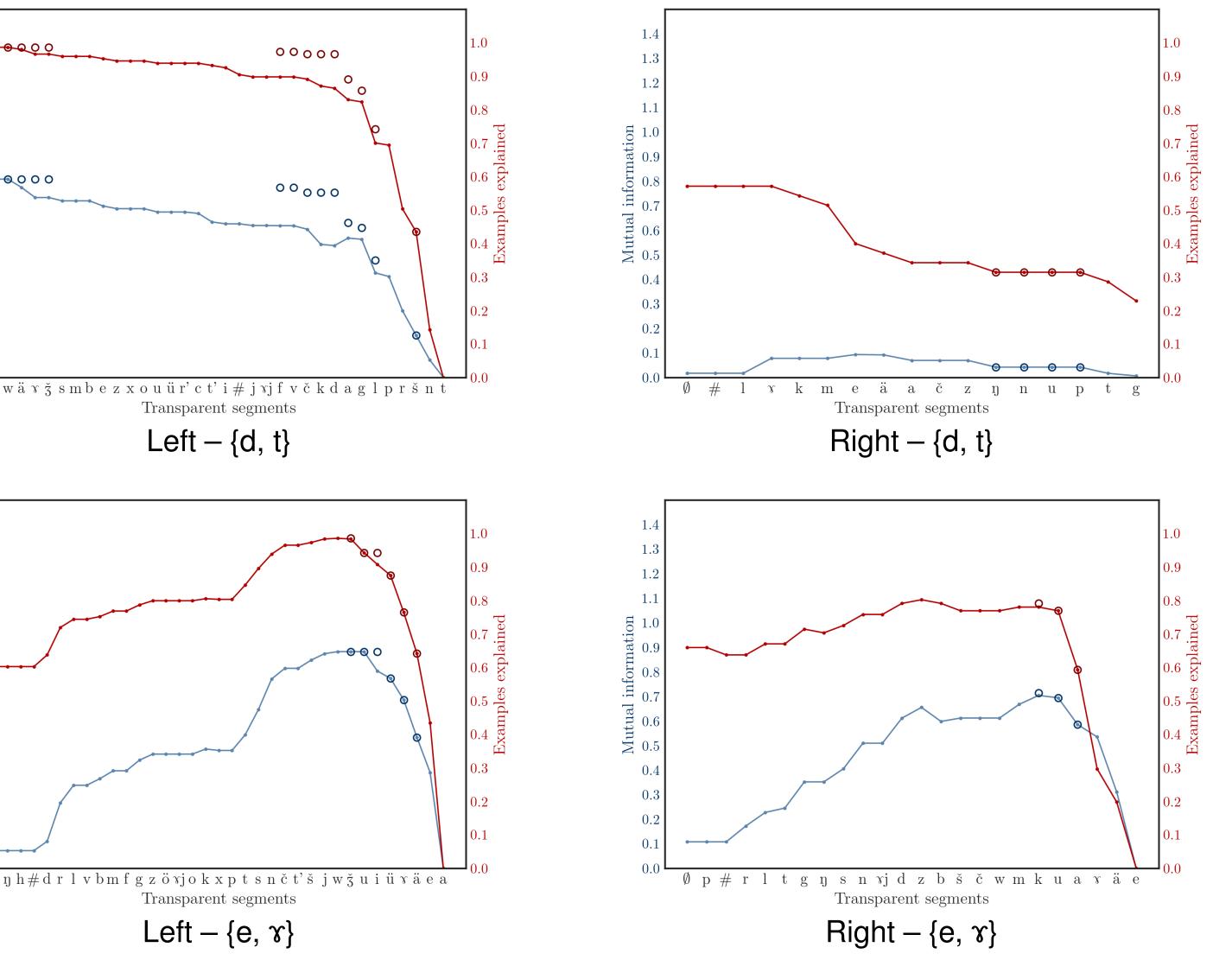
jumping

jump

jump


jump

... and unless the character is transparent!


Learning and evaluating rules

• Start with **nonlocal PMIs**

- Marginalize over alternants to **rank** context segments
- Expand the list of transparent segments, recalculating **local PMIs**
- Track metrics to select the best rule:
- average PMI over all bigrams
- portion of examples explained
- Use the notion of natural class to find phonologically viable configurations

A [] = = = = []				
Alternation	IVII (left)	EE (left)	MI (right)	EE (right)
{d, n, t}	1.4277	1.0000	0.0000	0.0000
{d, t}	0.8079	0.9864	0.0421	0.3143
{Ø, k, g}	0.4951	0.4909	0.0000	0.0000
{l, n}	0.5547	0.9738	0.0514	0.1154
{k, g}	0.0814	0.1653	0.0000	0.0000
{∅, e, Ƴ}	0.8431	0.6220	0.6205	0.5357
{a, ä}	0.8319	0.9733	0.8331	0.8387
{e, ¥}	0.8825	0.9857	0.7148	0.7912
{Ø, ¥}	0.8113	1.0000	1.0000	1.0000
{∅, ä}	0.1651	0.4688	0.5586	1.0000

• **Reduction step**: collapse groups that are identical up to known alternations • Repeat until the number of groups stops decreasing

Input	Extraction	Reduction	Extraction	Reduction
$[m \ x], [m \ e]$	$\{e, \gamma\}$	$\begin{bmatrix} m & \gamma, \\ m & e' \end{bmatrix}$		$\begin{bmatrix} m & \gamma, \\ m & e' \end{bmatrix}$
[d x], [d e], [t x], [t e]		$\begin{bmatrix} d & \gamma, \\ d & e \end{bmatrix}, \begin{bmatrix} t & \gamma, \\ t & e \end{bmatrix}$	$\{d, t\}$	$\begin{bmatrix} d & \gamma, \\ d & e, \\ t & \gamma, \\ t & e \end{bmatrix}$
[b e z], [e b e z], [x b x z]		$\begin{bmatrix} b e z \end{bmatrix}, \begin{bmatrix} e b e z, \\ \gamma b \gamma z \end{bmatrix}$	$\{\emptyset, e, \gamma\}$	$\begin{bmatrix} \emptyset & b & e & z, \\ e & b & e & z, \\ \gamma & b & \gamma & z \end{bmatrix}$

References:

BOUMA, G. 2009. Normalized (pointwise) mutual information in collocation extraction. • GOLDSMITH, J. 2011. A group structure for strings: Towards a learning algorithm for morphophonology. • LYUTIKOVA, E., KAZENIN, K., SOLOVYEV, V. & TATEVOSOV, S., eds. 2007. Mishar Dialect of Tatar Language: Essays on Syntax and Semantics