
Morphological agreement in Minimalist
Grammars
To appear in

Formal Grammar: Lecture Notes on Computer Science, Springer

Marina Ermolaeva

University of Chicago, Chicago, USA
mermolaeva@uchicago.edu

Abstract. Minimalist Grammars provide a useful tool for modeling nat-
ural language syntax by defining grammar fragments in a very precise
way. As a formalization of the Minimalist Program, they can accom-
modate linguistic analyses from the field of generative syntax. However,
they have no machinery for encoding agreement; while morphology can
be simulated by multiplying lexical items, there is no systematic way
to state generalizations and implement actual proposals. This paper ex-
tends Minimalist Grammars with morphological features and operations
on them. As a proof of concept, I show how Icelandic dative intervention
can be encoded in the modified formalism.

Keywords: Minimalist Grammars, Minimalist Syntax, agreement, mor-
phosyntax, Icelandic

Introduction

Agreement can be defined as the morphological manifestation of dependencies
between words. In a basic English sentence like He walks the verb agrees in person
and number with the subject, and the subject, in turn, receives nominative
case from the verb.1 These dependencies may be nonlocal; for instance, English
expletive constructions like There seems to have arrived a man exhibit long-
distance subject-verb agreement.

Chomsky’s Minimalist Program [4][5] treats these phenomena as an effect of
a much more general mechanism known as Agree. An explicit theory of feature
structures compatible with Chomsky’s framework is proposed by Adger in [1].
Lexical items are defined as sets of features, each specified as bearing a value
(drawn from some finite set) or being unvalued. Syntax is driven by features:
the probe of a syntactic operation is an element with an unvalued feature, and
the goal must bear a matching valued feature. Adger defines feature valuation
as unification of values (cf. [15]): the unvalued feature on the probe assumes
the value of the goal. The three operations are Merge, Move, and Agree. Merge
and Move operate on categorial features (T, V, N ...) and build new structure.
Agree targets morphosyntactic features (case, number, person, ...) and forms
dependencies between elements of the existing structure.
1 For the sake of exposition, I assume that case assignment reduces to agreement and
that structural case is explicitly assigned by finite verbs. Neither is free of controversy.

Example 1. The phrase this nice boy exhibits determiner-noun agreement. The
determiner bears an unvalued number feature and dominates the noun, which
has a valued feature. This probe-goal configuration allows Agree to apply:

DP

NP

boy [N, number: sg]nice [A]

this [D, number: ε]

Stabler’s Minimalist Grammars (MGs, [16][17]) have been designed as a math-
ematically rigorous formalization of Minimalist Syntax. The MG formalism is
based on operations analogous to Merge and Move. Agree, however, has no
counterpart. My goal is to extend MGs in a way that retains the relation to
the Minimalist Program, allowing to translate Minimalist proposals involving
agreement into the modified formalism.

1 Minimalist Grammars

I begin with the version of Minimalist Grammars defined in [17], with a few
tweaks. This formalism employs chain notation, reducing syntactically active
subtrees of derived trees to tuples of strings.

Definition 2. A minimalist grammar G is a 5-tuple 〈Σ,Syn, Types, Lex,F〉,
where

Σ is a finite set (of pronounced segments),

Syn = Base (nonempty finite set of categories)
∪ {=f | f ∈ Base} ∪ {=>f | f ∈ Base} (selectors)
∪ {+f | f ∈ Base} (licensors)
∪ {-f | f ∈ Base} ∪ {∗f | f ∈ Base} (licensees)

is a set of syntactic features,

Types = {::, :}, (lexical, derived)

Let the set of initial chains2 IC = Σ∗ ×Σ∗ ×Σ∗ Types Syn∗, and the set of
non-initial chains NC = Σ∗ Syn∗;

Lex ⊂ {ε} ×Σ∗ × {ε} {::} Syn∗, a subset of IC, is a finite set of lexical items
(lexicon),

F = {merge,move} is a set of structure-building operations:
• merge is the union of the following five functions, for ss, sh, sc, ts, th, tc ∈

Σ∗, · ∈ {:, ::}, f ∈ Base, γ ∈ Syn∗, δ ∈ Syn+, α1, ..., αk, β1, ..., βl ∈
NC (0 ≤ k, l),

2 Angle brackets are used to denote tuples. For any n-tuple or sequence, for 1 ≤ i ≤ n,
T [i] denotes the ith component of T . The (finite) product of sets A1, A2, ..., An
A1×A2× ...×An = {〈a1, a2, ..., an〉 | a1 ∈ A1, a2 ∈ A2, ..., an ∈ An}. Similarly, their
concatenation A1A2...An = {a1a2...an | a1 ∈ A1, a2 ∈ A2, ..., an ∈ An}.

mrg1 :
〈ε, sh, ε〉 :: =fγ 〈ts, th, tc〉 · f, β1, ..., βl

〈ε, sh, tsthtc〉 : γ, β1, ..., βl

mrg2 :
〈ss, sh, sc〉 : =fγ, α1, ..., αk 〈ts, th, tc〉 · f, β1, ..., βl

〈tsthtcss, sh, sc〉 : γ, α1, ..., αk, β1, ..., βl

mrg3 :
〈ss, sh, sc〉 · =fγ, α1, ..., αk 〈ts, th, tc〉 · fδ, β1, ..., βl

〈ss, sh, sc〉 : γ, α1, ..., αk, tsthtc : δ, β1, ..., βl

hmrg1 :
〈ε, sh, ε〉 :: =>fγ 〈ts, th, tc〉 · f, β1, ..., βl

〈ε, thsh, tstc〉 : γ, β1, ..., βl

hmrg3 :
〈ss, sh, sc〉 · =>fγ, α1, ..., αk 〈ts, th, tc〉 · fδ, β1, ..., βl

〈ss, thsh, sc〉 : γ, α1, ..., αk, tstc : δ, β1, ..., βl

• move is the union of the following three functions, for ss, sh, sc, t ∈ Σ∗,
f ∈ Base, F ∈ {-f, ∗f}, γ, ζ ∈ Syn∗, δ ∈ Syn+, and for α1, ..., αk ∈
NC (0 ≤ k) satisfying the condition (SMC)3 there is exactly one i ∈ [1, k]
such that αi has -f or ∗f as its first feature,

mv1 :
〈ss, sh, sc〉 · +fγ, α1, ..., αi−1, t F, αi+1, ..., αk

〈tss, sh, sc〉 : γ, α1, ..., αi−1, αi+1, ..., αk

mv2 :
〈ss, sh, sc〉 · +fγ, α1, ..., αi−1, t Fδ, αi+1, ..., αk

〈ss, sh, sc〉 : γ, α1, ..., αi−1, t : δ, αi+1, ..., αk

mv∗:
〈ss, sh, sc〉 · +fγ, α1, ..., αi−1, t ∗fζ, αi+1, ..., αk

〈ss, sh, sc〉 : γ, α1, ..., αi−1, t : ∗fζ, αi+1, ..., αk

Definition 3. An expression is a member of Exp = IC NC∗. An expression
e is a complete expression of category c ∈ Base iff e = 〈ss, sh, st〉 · c, where
· ∈ {::, :}.

Starred licensees of the form ∗f are optionally deleted (by mv1 or mv2) or
saved for later (by mv∗). The latter possibility corresponds to intermediate po-
sitions of movement. [16] mentions this option of implementing successive cyclic
movement; and a version of MGs with starred categorial features is explored in
[11]. A formalism with persistent features, optionally erased by syntactic opera-
tions, has been shown to be weakly equivalent to standard MGs [18].

MGs offer a limited means of encoding (agglutinative) morphology by assign-
ing separate lexical items to morphemes and constructing morphological words
with head movement. Dependencies between words can be enforced by building
restrictions into syntactic features.

3 The SMC (Shortest Move Constraint): is a special case of the requirement that at
any given step in the derivation the derived structure contain only finitely many
subtrees (chains) which are syntactically active (i.e. have unchecked features).

Example 4. G = 〈ΣG, SynG, T ypes, LexG,F〉 is an MG. Its lexicon LexG con-
tains the following lexical items:

this.sg.nom := 〈ε, this, ε〉 :: =n3SgN d -k3SgN
boy.sg.nom := 〈ε, boy, ε〉 :: n3SgN
walk := 〈ε, walk, ε〉 :: =d v

prs.3sg := 〈ε, -s, ε〉 :: =>v +k3SgN t

G generates one expression of category t, derived as follows:
mv1

〈this boy, walk -s, ε〉 : t

hmrg1
〈ε, walk -s, ε〉 : +k3SgN t, this boy -k3SgN

mrg3
〈ε, walk, ε〉 : v, this boy -k3SgN

mrg1
〈ε, this, boy〉 : d -k3SgN

boy.sg.nom
〈ε, boy, ε〉 :: n3SgN

this.sg.nom
〈ε, this, ε〉 :: =n3SgN d -k3SgN

walk
〈ε, walk, ε〉 :: =d v

prs.3sg
〈ε, -s, ε〉 :: =>v +k3SgN t

This toy grammar forces merge and move to only combine lexical items with
compatible morphological features – at the expense of having a separate feature
for each combination of morphological properties that may result in a distinct
morphological form. All agreement in this boy walk -s is local, which makes it easy
to refine syntactic features manually. For long-distance agreement dependencies,
a better option is to state compatibility restrictions as constraints defined in
monadic second-order logic, as shown in [8].

The generative capacity of MGs is sufficient to encode any mildly context-
sensitive pattern, so this strategy is adequate for ensuring correct agreement.
However, it does not provide a succinct, systematic way of formulating gen-
eralizations about morphological dependencies; the relation to the Minimalist
Agree operation remains obscure. Furthermore, the mappings from derivation
to pronounced form in MGs have been given without special attention to the
complications imposed by a detailed model of morphology. In the next section I
propose a refinement which allows for straightforward integration with standard
models of morphology.

2 Towards agreement

2.1 Bird’s-eye view

Bundles and channels MGs treat all features as uninterpretable – in the
sense that they all (with the exception of one category feature) must be deleted

to form a complete expression. Morphological agreement essentially requires a
class of features which are valued in the course of derivation and serve as building
blocks of syntactic output. The first step is to redefine lexical items, replacing
each sequence of phonological segments with a bundle – a set of morphological
features. Incidentally, this modification separates syntax from phonology: pro-
nounced segments are no longer present in lexical items and are assumed to be
inserted outside syntax.

What about feature valuation? One option is an almost faithful translation
of Minimalist Agree [1] into the MG formalism. Agree can be straightforwardly
implemented as (covert) movement, allowing lexical items with matching mor-
phological features to exchange information. However, no finite boundary can
be imposed on the number of chains with unchecked features in the structure:
consider, for instance, a sequence of adjectives modifying a noun, all of which
have case requirements yet to be satisfied. This “naive” approach is incompatible
with any version of the SMC.

An alternative, explored here, is to use existing syntactic dependencies cre-
ated by merge and move to transmit morphological information. Agree is de-
pendent on structure-building operations, which means that agreement is neces-
sarily local. A long-distance morphological dependency between elements X and
Y can be represented as a series of local information exchanges across merge
dependencies involving, step by step, all elements intervening between X and Y .

Expanding on the idea outlined in [12], the flow of morphological informa-
tion can be controlled by annotating syntactic features with their agreement
properties, which can be conveniently thought of in terms of channels. For each
syntactic feature, one needs to specify whether it accepts information from what-
ever checks it (receiving channel) and which values it transmits to whatever
checks it (emitting channel).4 Whenever two syntactic features establish a syn-
tactic dependency, and one of them has a receiving channel, the chain/expression
bearing this feature is updated with values specified for the emitting channel of
the other feature. Borrowing terminology from linguistic literature, I call this
process downward agreement if the feature at the receiving end is a selector or
licensor, and upward agreement if it is a categorial feature or licensee.

Example 5. Recall the lexical item boy.sg from Example 4. The phonological
exponent boy is replaced with a bundle, with ε being the default value:

boy.sg :=

〈
ε,

[boy
num:sg
per:3
case:ε

]
, ε

〉
:: n

[num:sg
per:3

]
→

←

The category feature n has a receiving channel (denoted by ←), which allows
boy.sg to receive a case value via upward agreement. The emitting channel on
n (indicated by →) transmits number and person to whatever selects boy.sg.
4 A lexical item may transmit different values of the same morphological feature via
different channels. Moreover, these values need not be a subset of values in the item’s
own bundle. Keeping the content of emitting channels unconstrained is useful: for
example, a preposition is allowed to transmit lexical case to its complement without
morphologically manifesting it itself.

Probes and goals The channel-based agreement system can be refined to
bring it more in line with the traditional notion of Agree. One such restriction
is mentioned in [5] as a locality condition on goal defined in terms of “closest
c-command” and in [1] as the requirement that the features in a probe-goal
relation have no other matching feature intervening between them. The channel
system has a built-in locality condition: each lexical item interacts directly with
the head of the expression it selects/licenses and is not allowed to probe further.
For items with multiple selectors/licensors, it is sufficient to require heads to
accept (and transmit) agreement information via their last receiving channel. In
other words, later values overwrite those received earlier. The intuition is simple:
if X is selected by Y , the argument of X which is merged last will be the closest
goal for Y .

Another useful restriction is known as the freezing effect of feature checking
[2]. In essence, it rules out agreement in intermediate positions of successive
cyclic movement. This condition is only relevant for starred licensees and can be
built into the definition of mv∗ in a straightforward way.

Feature sharing Long-distance upward agreement (across merge dependen-
cies) cannot be reconciled with the requirement that the goal always provide a
valued feature to the probe. When this is not the case, the agreement relation
between lexical items in an expression has to be recorded so that, when the
needed value enters the derivation, both items could be updated simultaneously.
Nothing prevents such a relation from spanning multiple chains. The MG for-
malism distinguishes between the initial chain and non-initial chains but does
not record any hierarchical relations. Additional bookkeeping is required to keep
track of this information.

The proposed solution is reminiscent of feature sharing [7]. Their version
of Agree does not require the goal feature to bear a value: matching features
become a shared feature which is valued if either of the coalescing features is
valued. I adopt a similar approach by recording for each feature, alongside its
value, its rewritability – the highest chain that can transmit a value to it. With
the SMC in place, every non-initial chain is uniquely identified by the name of
its first licensee. Thus, rewritability can be set to on (active, or sharing value
with the initial chain), a licensee name (sharing value with a non-initial chain),
or off (inactive, or not accessible to agreement). I assume that morphological
features start out as off if valued in the lexicon.

For any chain in an expression, its subchains are chains representing its sub-
trees. Each non-initial chain can be annotated with the sequence of all non-initial
chains it is a subchain of (including itself), from the outermost to the most em-
bedded. I will refer to this sequence as lineage of the chain. By convention, all
lineages end with an off value. The set of all lineages for a given grammar is
the set of all sequences of elements of Base without repetitions, followed by off.
Lineages are updated throughout the derivation. Whenever a new non-initial
chain appears in the expression, the name of its first licensee is prepended to the
lineage of the new chain as well as all its subchains. On the other hand, when a

chain moves, it ceases to be a subchain of any non-initial chain.5 Therefore, all
chains undergoing movement are stripped of the initial part of their lineage up
to and including the relevant licensee.

Long-distance upward agreement succeeds if there is an uninterrupted se-
quence of channels between the probe and the goal. All that is required is to
record, for each morphological feature, where this sequence ends (rewritability)
and what path it takes (chain lineage). Thus, the two modifications introduced
above are sufficient to keep track of channels connecting chains in an expression.

Example 6. Consider the expression exp, shown as a phrase-structure tree:

exp :=

<

<

<

A 〈ε, [m:ε] , ε〉
a← -h←

B 〈ε, [m:ε] , ε〉
=a[m:ε]→ b← -g←

C 〈ε, [m:ε] , ε〉
=b[m:ε]→ c -f←

X 〈ε, [m:v] , ε〉
=c +g[m:v]→ x

The next derivation step will engage the +g/-g feature pair, transmitting the
value v to B; v has to percolate to A, but not to C. This information is lost in the
standard chain notation. However, adding rewritabilities and lineages allows to
identify chains accessible to agreement – namely, those with g in the lineage:

exp′ := mrg3 (X,mrg3 (C,mrg3 (B, A))) =

〈ε, [m:v/off] , ε〉 : +g[m:v/off]→ x (off),

[m:ε/f] -f← (f off), [m:ε/f] -g← (f g off), [m:ε/f] -h← (f g h off)

2.2 Minimalist Grammars with agreement

Definition 7. A minimalist grammar with agreement (MGagr) G is a 5-tuple
〈Mor, Syn, Types, Lex, F〉, where

Mor = {f : X → Basem × ({on, off} ∪ Base)} is a set of bundles, where
Basem, V al are finite sets such that ε ∈ V al is the default value, and Base
is a nonempty finite set (of syntactic feature names);

Feat = Syn × {←,←6 } ×Mor is a set of annotated features, where Syn is a
set of syntactic features built from Base as specified in Definition 2;

Types = {::, :}, (lexical, derived)

Let Lineage = {s | s ∈ Base∗ & for 1 ≤ i, j ≤ |s|, si 6= sj} {off}. Then the
set of initial chains IC =Mor∗ ×Mor∗ ×Mor∗ Types Feat∗ Lineage, and
the set of non-initial chains NC =Mor∗ Feat∗ Lineage;

5 If movement is viewed as copying, it is not immediately clear why this should be the
case. A system where moving subtrees retain their relation to the original position
would be interesting to explore but falls outside the scope of this paper.

Lex ⊂ {ε} ×Mor∗ × {ε} {::} Feat∗ {off}, a subset of IC, is a finite set of
lexical items,

F = {merge-agr,move-agr} is a set of structure-building operations.

Notation 8. Let M ∈ Mor such that M = {〈φ1, 〈v1, r1〉〉, ..., 〈φn, 〈vn, rn〉〉}.
Then for i ∈ [1..n], vi ∈ V al is the value of φi in M , and ri ∈ {on, off} ∪Base

is its rewritability. M can be written as
[
φ1:v1/r1

...
φn:vn/rn

]
or as ∅ if n = 0.

Notation 9. Let f = 〈xf, Y, M〉 ∈ Feat such that f ∈ Base. Then fid = f
is the name of f , Y ∈ {←,←6 } specifies its receiving channel and M ∈ Mor
its emitting channel. f can be written as xfM→Y . Where it does not lead to
ambiguity, the receiving channel may be omitted if Y = ←6 , and the emitting
channel may be omitted if M = ∅.

Notation 10. Chain lineages are enclosed in parentheses for better readability.

Notation 11. Let item = 〈ε,M, ε〉 :: γ (off), whereM ∈Mor and γ ∈ Feat∗,

be a lexical item such that the bundle M =
[
φ1:v1/r1

...
φn:vn/rn

]
. Then

[item
φm+1:vm+1/rm+1

...
φn:vn/rn

]
can be used as a semi-formal abbreviation forM , where item stands for a subset
of lexically valued features {〈φ1, 〈v1, off〉〉, ..., 〈φm, 〈vm, off〉〉} ⊆M .

At the level of bundles, agreement is handled by two functions updating
active (on) features with values provided by the goal. Downward agreement
(agr↓) leaves all features in the probe on, as the probe is, by definition, part of
the initial chain. Upward agreement (agr↑) sets each feature in the probe to on
if active in the goal and to a given rewritability value otherwise. An auxiliary
function, act, reactivates features with rewritability values present in a given
sequence, setting them to on.

Definition 12. agr↓ : (Mor×Mor)→Mor is a function such that for P,M ∈
Mor, for φ ∈ Basem the result of downward agreement of P withM is as follows:

agr↓(M,P, φ) ≡ P ↓M (φ) =


〈M(φ)[1], on〉 if M(φ) is defined

and P (φ)[2] = on;
P (φ) otherwise.

Definition 13. agr↑ : (({off} ∪ Base) ×Mor ×Mor) → Mor is a function
such that for P,M ∈Mor, re ∈ {off} ∪Base, φ ∈ Basem the result of upward
agreement of P withM (setting to re the rewritability of any feature in P whose
value is not to be shared with the feature in M) is as follows:

agr↑(re,M, P, φ) ≡ P ↑Mre (φ) =



〈M(φ)[1], on〉 if P (φ)[2] = on
and M(φ)[2] = on;

〈M(φ)[1], re〉 if P (φ)[2] = on
and M(φ)[2] = off;

〈P (φ)[1], re〉 if M(φ) is undefined;
P (φ) otherwise.

Definition 14. act : (Base+ ×Mor) → Mor is a function such that for P ∈
Mor, L ∈ Base+, φ ∈ Basem:

act(L,P, φ) ≡ actL(P, φ) =

{
〈P (φ)[1], on〉 if P (φ)[2] ∈ L;
P (φ) otherwise.

The definitions are extended to apply to objects other than bundles:

Notation 15. ForM ∈Mor, re ∈ {off}∪Base, L ∈ Base+, fun ∈ {agr↓(M),
agr↑(re,M), act(L)}:

for f ∈ Feat, fun(f) = 〈f [1], f [2], fun(f [3])〉;
for (x1, ..., xn) ∈Mor∗, fun(x1, ..., xn) = fun(x1), ..., fun(xn);

for (x1, ..., xn) ∈ Feat∗, fun(x1, ..., xn) = fun(x1), ..., fun(xn);

for c = s γ (A) ∈ NC such that s ∈Mor∗ and γ ∈ Feat∗,
fun(c) = fun(s) fun(γ) (A).

Finally, merge and move are redefined to accommodate agreement. The new
rules manipulate lineages as well as bundles. Note that P ↓∅ = P , but P ↑∅re 6= P :
upward agreement with an empty bundle sets the rewritability of all features in
the goal to re. This special case corresponds to lack of agreement in the absence
of a receiving channel and in intermediate positions of movement.

Definition 16. merge-agr is the union of the following five functions, for ss,
sh, sc, ts, th, tc, t1, ..., tl ∈ Mor∗, · ∈ {:, ::}, f, x1, ..., xl ∈ Base, γ, ζ ∈ Feat∗,
δ1, ..., δl ∈ Feat+,M,N ∈Mor, L1, ..., Ll ∈ Lineage,X,Y ∈ {←,←6 }, α1, ..., αk,
t1 δ1 x1L1, ..., tl δl xlLl ∈ NC (0 ≤ k, l),

mrg1-agr :
〈ε, sh, ε〉 :: =fM→X γ (off) 〈ts, th, tc〉 · fN→Y (off), t1 δ1 (x1L1), ..., tl δl (xlLl)

〈ε, sh↓N̂ , (tsthtc)↑M̂off〉 : γ
↓N̂ (off), (t1 δ1 (x1L1))

↑M̂
x1 , ..., (tl δl (xlLl))

↑M̂
xl

mrg2-agr :
〈ss, sh, sc〉 : =fM→X γ (off), α1, ..., αk 〈ts, th, tc〉 · fN→Y [off], t1 δ1 (x1L1), ..., tl δl (xlLl)

〈(tsthtc)↑M̂offss
↓N̂ , sh

↓N̂ , sc
↓N̂ 〉 : γ↓N̂ (off), α1

↓N̂ , ..., αk
↓N̂ , (t1 δ1 (x1L1))

↑M̂
x1 , ..., (tl δl (xlLl))

↑M̂
xl

mrg3-agr :
〈ss, sh, sc〉 · =fM→X γ (off), α1, ..., αk 〈ts, th, tc〉 · fN→Y gζ (off), t1 δ1 (x1L1), ..., tl δl (xlLl)

〈ss↓N̂ , sh↓N̂ , sc↓N̂ 〉 : γ↓N̂ (off), α1
↓N̂ , ..., αk

↓N̂ , (tsthtc gζ (gidoff))
↑M̂
gid
, (t1 δ1 (gidx1L1))

↑M̂
gid
, ..., (tl δl (gidxlLl))↑M̂gid

hmrg1-agr :
〈ε, sh, ε〉 :: =>fM→X γ (off) 〈ts, th, tc〉 · fN→Y (off), t1 δ1 (x1L1), ..., tl δl (xlLl)

〈ε, th↑M̂offsh↓N̂ , (tstc)
↑M̂
off〉 : γ

↓N̂ (off), (t1 δ1 (x1L1))
↑M̂
x1 , ..., (tl δl (xlLl))

↑M̂
xl

hmrg3-agr :
〈ss, sh, sc〉 · =>fM→X γ (off), α1, ..., αk 〈ts, th, tc〉 · fN→Y gζ (off), t1 δ1 (x1L1), ..., tl δl (xlLl)

〈ss↓N̂ , th↑M̂offsh↓N̂ , sc↓N̂ 〉 : γ↓N̂ (off), α1
↓N̂ , ..., αk

↓N̂ , (tstc gζ (gidoff))
↑M̂
gid
, (t1 δ1 (gidx1L1))

↑M̂
gid
, ..., (tl δl (gidxlLl))↑M̂gid

where M̂ =

{
M if Y = ←
∅ if Y = ←6

and N̂ =

{
N if X = ←
∅ if X = ←6

Movement rules have to address the additional complication of classifying
chains. Each non-initial chain undergoes upward agreement (if it has the moving
chain in its lineage) or downward agreement (as a subchain of the initial chain).

Definition 17. move-agr is the union of the following three functions, for ss,
sh, sc, t1, ..., tk ∈Mor∗, f ∈ Base, F ∈ {-f, ∗f}, γ, ζ ∈ Feat∗, δ1, ..., δk ∈ Feat+,
M,N ∈ Mor, A ∈ Base∗, B,L1, ..., Ll ∈ Lineage, X,Y ∈ {←,←6 }, and for
α1, ..., αk ∈ NC (0 ≤ k) such that for j ∈ [1, k] αj = tj δj Lj , satisfying (SMC):
there is exactly one i ∈ [1, k] such that αi has -f or ∗f as its first syntactic
feature

mv1-agr :
〈ss, sh, sc〉 · +fM→X γ (off), α1, ..., αi−1, ti FN→Y (Af off), αi+1, ..., αk

〈(actAf(ti))
↑M̂
offss

↓N̂ , sh
↓N̂ , sc

↓N̂ 〉 : γ↓N̂ (off), α1
′, ..., αi−1

′, αi+1
′, ..., αk

′

where for j ∈ [1, k], j 6= i

αj
′ =


(actLj

′f(tj δj (xLj
′′)))↑M̂x if Lj = Lj

′fxLj ′′ such that
Lj
′ ∈ Base∗, x ∈ Base, Lj ′′ ∈ Lineage

(tj δj (Lj))
↓N̂ otherwise

mv2-agr :
〈ss, sh, sc〉 · +fM→X γ (off), α1, ..., αi−1, ti FN→← gζ (AfB), αi+1, ..., αk

〈ss↓N̂ , sh↓N̂ , sc↓N̂ 〉 : γ↓N̂ (off), α1
′, ..., αi−1

′, (actAf(ti gζ (gidB)))↑M̂gid , αi+1
′, ..., αk

′

where for j ∈ [1, k], j 6= i

αj
′ =


(actLj

′f(tj δj (gidLj
′′)))↑M̂gid if Lj = Lj

′fLj ′′ such that
Lj
′ ∈ Base∗, Lj ′′ ∈ Lineage

(tj δj (Lj))
↓N̂ otherwise

mv∗-agr :
〈ss, sh, sc〉 · +fM→X γ (off), α1, ..., αi−1, ti ∗fN→Y ζ (AfB), αi+1, ..., αk

〈ss, sh, sc〉 : γ (off), α1
′, ..., αi−1

′, (actA(ti ∗fN→Y ζ (fB)))↑∅f , αi+1
′, ..., αk

′

where for j ∈ [1, k], j 6= i

αj
′ =


(actLj

′(tj δj (fLj ′′)))
↑M̂
f if Lj = Lj

′fLj ′′ such that
Lj
′ ∈ Base∗, Lj ′′ ∈ Lineage

(tj δj (Lj))
↓N̂ otherwise

where M̂ =

{
M if Y = ←
∅ if Y = ←6

and N̂ =

{
N if X = ←
∅ if X = ←6

Example 18. G′ = 〈ΣG′ , SynG′ , Types, LexG′ ,F〉 is a MGagr. Its lexicon LexG′

contains the following lexical items:

this :=

〈
ε,

[this
num:ε/on
per:ε/on
case:ε/on

]
, ε

〉
:: =n[case:ε/on]→← d -k

[
num:ε/on
per:ε/on

]
→

← (off)

boy.sg :=

〈
ε,

[boy
num:sg/off
per:3/off
case:ε/on

]
, ε

〉
:: n

[
num:sg/off
per:3/off

]
→

← (off)

walk :=

〈
ε, [walk] , ε

〉
:: =d v (off)

prs :=

〈
ε,

[
prs

num:ε/on
per:ε/on

]
, ε

〉
:: =v +k[case:nom/off]→

← t (off)

G′ generates one expression of category t:
mv1-agr〈[this

num:sg/off
per:3/off

case:nom/off

][boy
num:sg/off
per:3/off

case:nom/off

]
, [walk]

[
prs

num:sg/on
per:3/on

]
, ε

〉
:

t (off)

hmrg1-agr〈
ε, [walk]

[
prs

num:ε/on
per:ε/on

]
, ε

〉
,

:
+k[case:nom/off]→
← t (off)

[this
num:sg/k
per:3/k
case:ε/k

][boy
num:sg/off
per:3/off
case:ε/k

]

-k

[
num:sg/k
per:3/k

]
→

← (k off)

mrg3-agr〈
ε, [walk] , ε

〉
,

:
v (off)

[this
num:sg/k
per:3/k
case:ε/k

][boy
num:sg/off
per:3/off
case:ε/k

]

-k

[
num:sg/k
per:3/k

]
→

← (k off)

mrg1-agr〈
ε,

[this
num:sg/on
per:3/on
case:ε/on

]
,

[boy
num:sg/off
per:3/off
case:ε/on

]〉
:

d -k

[
num:sg/on
per:3/on

]
→

← (off)

boy.sg〈
ε,

[boy
num:sg/off
per:3/off
case:ε/on

]
, ε

〉
::

n

[
num:sg/off
per:3/off

]
→

← (off)

this〈
ε,

[this
num:ε/on
per:ε/on
case:ε/on

]
, ε

〉
::

=n[case:ε/on]→← d -k

[
num:ε/on
per:ε/on

]
→

← (off)

walk〈
ε, [walk] , ε

〉
::

=d v (off)

prs〈
ε,

[
prs

num:ε/on
per:ε/on

]
, ε

〉
::

=v +k[case:nom/off]→
← t (off)

3 Case study: dative intervention in Icelandic

3.1 Data

A certain class of Icelandic constructions exhibits an interesting agreement pat-
tern. The verb agrees in number with its nominative object inside a small clause
(SC). However, this agreement seems optional: as an alternative, the verb may
appear in the default 3.sg form. Furthermore, agreement can be disrupted by a
dative experiencer intervening between the verb and the nominative object, in
which case only the default verb form is possible. Only some experiencers cause
this effect (1), while others are transparent for agreement (2):

(1) a. Það
expl

finnst
find.sg

fáum
few

börnum
children.dat

[sc tölvurnar
computers.def.nom

ljótar
ugly.nom

].

b. *Það
expl

finnast
find.pl

fáum
few

börnum
children.dat

tölvurnar
computers.def.nom

ljótar.
ugly.nom

‘Few children find the computers ugly.’ [13, p.54–55]

(2) a. Það
expl

finnst
find.sg

mörgum
many

stúdentum
students.dat

tölvurnar
computers.def.nom

ljótar.
ugly.nom

b. Það
expl

finnast
find.pl

mörgum
many

stúdentum
students.dat

tölvurnar
computers.def.nom

ljótar.
ugly.nom

‘Many students find the computers ugly.’ [10, p.1000]

The intervention effect can occur even if the dative undergoes wh-movement
and no longer linearly intervenes between the verb and the nominative object:

(3) a. Hvaða
which

stúdent
student.dat

finnst
find.sg

tölvurnar
computers.def.nom

ljótar?
ugly.nom

b. Hvaða
which

stúdent
student.dat

??finnast
find.pl

tölvurnar
computers.def.nom

ljótar?
ugly.nom

‘Which student finds the computers ugly?’ [10, p.1001]

A generalization dealing with these examples is proposed in [13]: dative ex-
periencers are transparent for agreement just in case they can undergo Object
Shift – a movement to the specifier of v. The ability of a DP to shift is an in-
dependent property of the quantifier. Furthermore, [13] argues that agreement
with the nominative is, in fact, deterministic: obligatory iff the experiencer has
shifted, impossible otherwise. Object Shift is string-vacuous in examples like
(2a). However, VP-level adverbs are expected to precede an in-situ dative and
follow a shifted dative. The former configuration is compatible only with default
agreement (4), while the latter only with normal agreement (5):

(4) a. Það
expl

finnst
find.sg

fljótt
quickly

mörgum
many

köttum
cats.def.dat

mýsnar
mice.def.nom

góðar.
tasty

b. Það
expl

??/*finnast
find.pl

fljótt
quickly

mörgum
many

köttum
cats.def.dat

mýsnar
mice.def.nom

góðar.
tasty

‘Many cats quickly find the mice tasty.’ [13, p.63]

(5) a. Það
expl

??/*finnst
find.sg

mörgum
many

köttum
cats.def.dat

fljótt
quickly

mýsnar
mice.def.nom

góðar.
tasty

b. Það
expl

finnast
find.pl

mörgum
many

köttum
cats.def.dat

fljótt
quickly

mýsnar
mice.def.nom

góðar.
tasty

‘Many cats quickly find the mice tasty.’ [13, p.63]

This reasoning is extended to fronted dative experiencers, including wh-
arguments (3), which are also required to undergo Object Shift for agreement
to succeed. Importantly, Object Shift does not alter the relation between the
T(ense) head, which morphologically manifests agreement, and the nominative
object. This observation can be reconciled with the traditional notion of Agree
by assuming that the primary locus of agreement is lower than T – namely, v.
Object Shift removes the dative from the probing domain of v, allowing v to
probe the nominative object. T inherits the relevant features from v (via Agree
with other heads intervening between T and v). This approach to Agree reduces
an instance of long-distance agreement to a series of local dependencies – not
unlike the MGagr formalism.

3.2 Grammar Fragment

Let each determiner phrase transmit its number value via its category feature
channel and the default value via its licensee channel. Then the difference be-
tween shiftable and non-shiftable DPs can be reduced to the distinction between
a starred licensee (∗k) and a plain licensee (-k).6

many∼ :=
〈
ε,
[many∼
num:pl/off

]
, ε
〉

:: d[num:pl/off]→ ∗k[num:ε/off]→ (off)

few∼ :=
〈
ε,
[few∼
num:pl/off

]
, ε
〉

:: d[num:pl/off]→ -k[num:ε/off]→ (off)

The verb find selects a small clause (containing an object DP) and an ex-
periencer DP, receiving a number value from the former. There is no agreement
with the dative experiencer, so the relevant selector =d has no receiving channel.

find :=
〈
ε, [find] , ε

〉
:: =sc← =d V[num:ε/on]→ (off)

SC :=
〈
ε,
[SC
num:pl/off

]
, ε
〉

:: sc[num:pl/off]→ (off)

The crucial point in the derivation is AgrO which has two receiving channels.
v and vshift pass information along; additionally, vshift provides the landing site
of Object Shift. Thus, T eventually receives the last value transmitted to AgrO.

AgrO :=
〈
ε, [AgrO] , ε

〉
:: =>V← +k← agrO[num:ε/on]→ (off)

6 For space reasons, DPs and small clauses are treated as atomic units. They can
be decomposed to model internal agreement in detail. In particular, it is possible
to embed DPs within another functional projection, connecting intervention and
case (cf. [14], i.a.); this would allow the verb to assign dative to its argument and
manipulate the agreement properties of its outer layer at the same time.

v :=
〈
ε, [v] , ε

〉
:: =>agrO← v[num:ε/on]→ (off)

vshift :=
〈
ε, [vshift] , ε

〉
:: =>agrO← +k v[num:ε/on]→ (off)

T :=
〈
ε,
[T
num:ε/on

]
, ε
〉

:: =>v← t (off)

Abstracting away from person and case, the eight lexical items defined above
suffice7 to model the number contrast between (1) and (2). Any experiencer can
check its licensee in the specifier of AgrO. In this case, AgrO receives the default
number value, giving rise to (1a) and (2a).

Example 19. The derivation of (1a) proceeds as follows:

i1 :=mrg1-agr (find, sc) =〈
ε, [find] ,

[SC
num:pl/off

] 〉
: =d V[num:pl/on]→ (off)

i2 :=mrg3-agr (i1, few∼) =〈
ε, [find] ,

[SC
num:pl/off

] 〉
: V[num:pl/on]→ (off),[few∼

num:pl/off
]
-k[num:ε/off]→ (off)

i3 := hmrg1-agr (AgrO, i2) =〈
ε, [find] [AgrO] ,

[SC
num:pl/off

] 〉
:: +k← agrO[num:pl/on]→ (off),[few∼

num:pl/off
]
-k[num:ε/off]→ (k off)

i4 :=mv1-agr (i3) =〈 [few∼
num:pl/off

]
, [find] [AgrO] ,

[SC
num:pl/off

] 〉
: agrO[num:ε/on]→ (off)

i5 := hmrg1-agr (v, i4) =〈
ε, [find] [AgrO] [v] ,

[few∼
num:pl/off

] [SC
num:pl/off

] 〉
: v[num:ε/on]→ (off)

i6 := hmrg1-agr (T, i5) =〈
ε, [find] [AgrO] [v]

[T
num:ε/on

]
,
[few∼
num:pl/off

] [SC
num:pl/off

] 〉
: t (off)

7 These items support partial derivations up to T, where morphological dependencies
are resolved. Assuming that expletives are merged above TP and move to the specifier
of CP [3], the following addition enables full CP derivations of (1)–(3):

which∼ :=
〈
ε,
[which∼
num:pl/off

]
, ε
〉

:: d[num:pl/off]→ -k[num:ε/off]→ -wh (off)

Texpl :=
〈
ε, [Texpl] , ε

〉
:: =t =expl t (off)

Expl :=
〈
ε, [expl] , ε

〉
:: expl -wh (off)

C :=
〈
ε, [C] , ε

〉
:: =t +wh c (off)

The second option is only available for shiftable experiencers. The ∗k feature
can “survive” movement to the specifier of AgrO to be checked later, in the spec-
ifier of vshift (whose +k has no receiving channel): this movement corresponds
to Object Shift. In this case, AgrO will never receive the default agreement value
and will instead transmit whatever value came from the small clause, resulting
in the verb agreeing with its nominative argument.

Example 20. The derivation of (2b) proceeds as follows:

a1 :=mrg1-agr (find, sc) =〈
ε, [find] ,

[SC
num:pl/off

] 〉
: =d V[num:pl/on]→ (off)

a2 :=mrg3-agr (a1, many∼) =〈
ε, [find] ,

[SC
num:pl/off

] 〉
: V[num:pl/on]→ (off),[many∼

num:pl/off
]
∗k[num:ε/off]→ (k off)

a3 := hmrg1-agr (AgrO, a2) =〈
ε, [find] [AgrO] ,

[SC
num:pl/off

] 〉
: +k← agrO[num:pl/on]→ (off),[many∼

num:pl/off
]
∗k[num:ε/off]→ (k off)

a4 :=mv∗-agr (a3) =〈
ε, [find] [AgrO] ,

[SC
num:pl/off

] 〉
: agrO[num:pl/on]→ (off),[many∼

num:pl/off
]
∗k[num:ε/off]→ (k off)

a5 := hmrg1-agr (vshift, a4) =〈
ε, [find] [AgrO] [vshift] ,

[SC
num:pl/off

] 〉
: +k v[num:pl/on]→ (off),[many∼

num:pl/off
]
∗k[num:ε/off]→ (k off)

a6 :=mv1-agr (a5) =〈 [many∼
num:pl/off

]
, [find] [AgrO] [vshift] ,

[SC
num:pl/off

] 〉
: v[num:pl/on]→ (off)

a7 := hmrg1-agr (T, a6) =〈
ε, [find] [AgrO] [vshift]

[T
num:pl/on

]
,
[many∼
num:pl/off

] [SC
num:pl/off

] 〉
: t (off)

4 Discussion

In this paper, I have developed a modification of Minimalist Grammars that
accommodates morphological agreement, redefining syntactic operations over
bundles of morphological features. The Agree operation of Chomsky’s Mini-
malist Program is reduced to local transmission of information over syntactic
dependencies. In order to demonstrate the practicality of the new formalism, I
have used it to express a precise, formalized analysis of Icelandic dative inter-
vention inspired by the proposal in [13]. The key element of the generalization

– namely, the link between Object Shift and agreement – has been translated
into a grammar fragment, which can be expanded further to incorporate more
insights from Minimalist syntax (see e.g. fn. 6, 7).

MGs with agreement output sequences of bundles and can interface with
any sufficiently explicit theory of morphology. For instance, they are compatible
with formalizations of Distributed Morphology [9] that take a sequence of feature
structures as syntactic input: [19] and, more recently, [6].

While proving the equivalence of MGs with agreement and unmodified MGs
is outside the scope of this paper, a few observations on the matter are in order.
Agreement is transmitted across dependencies established by structure-building
operations. This limits the number of goals in any given expression to the number
of chains, which, in turn, is guaranteed to be finite by the SMC. The problem of
long-distance upward agreement, which is the only remaining source of “nonlo-
cality” in the grammar, is addressed by adopting an approach similar to Feature
Sharing: informally speaking, each item that requires a feature value via upward
agreement pushes the responsibility for obtaining it to whatever item immedi-
ately selects or licenses it. Thus, at any given point in the derivation, there are
finitely many different morphological feature values which can be updated or
transmitted to other items. This makes it possible to convert an MGagr into an
equivalent MG, reformulating lexical items over bundles in terms of unanalyzable
elements (corresponding to bundles of valued features) and recasting agreement
transformations as compatibility constraints.

Acknowledgments My thanks to Karlos Arregi and Greg Kobele for their
advice regarding both the linguistic and the formal aspects of this paper, and to
the anonymous reviewers for their helpful comments and suggestions.

References

1. Adger, D.: A minimalist theory of feature structure. Features: Perspectives on a
key notion in linguistics pp. 185–218 (2010)

2. Bošković, Ž.: On successive cyclic movement and the freezing effect of feature
checking. In: Hartmann, J., Hegedüs, V., van Riemsdijk, H. (eds.) Sounds of silence:
Empty elements in syntax and phonology. Elsevier North Holland, Amsterdam (in
press)

3. Bowers, J.: Transitivity. Linguistic Inquiry 33(2), 183–224 (2002)
4. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge, MA (1995)
5. Chomsky, N.: Minimalist Inquiries: the framework. In: Martin, R., Michaels, D.,

Uriagereka, J. (eds.) Step by Step: Essays on Minimalist Syntax in Honor of Howard
Lasnik, pp. 89–156. MIT Press, Cambridge, MA (2000)

6. Ermolaeva, M., Edmiston, D.: Distributed morphology over strings. Poster pre-
sented at PLC 41, Philadelphia (2017)

7. Frampton, J., Gutmann, S.: Agreement is feature sharing (2000), unpublished
manuscript

8. Graf, T.: Local and Transderivational Constraints in Syntax and Semantics. Ph.D.
thesis, UCLA (2013)

9. Halle, M., Marantz, A.: Distributed morphology and the pieces of inflection. In:
Hale, K., Keyser, S. (eds.) The view from building 20, pp. 111–176. The MIT Press
(1993)

10. Holmberg, A., Hróarsdóttir, T.: Agreement and movement in icelandic raising con-
structions. Lingua 114(5), 651–673 (2004)

11. Kobele, G.M.: Generating Copies: An investigation into structural identity in lan-
guage and grammar. Ph.D. thesis, UCLA (2006)

12. Kobele, G.M.: A derivational approach to phrasal spellout (2012), slides presented
at BCGL 7

13. Kučerová, I.: Long-distance agreement in icelandic: locality restored. The Journal
of Comparative Germanic Linguistics 19(1), 49–74 (2016)

14. Rezac, M.: Phi-agree and theta-related case. In: Harbour, D., Adger, D., Bejar,
S. (eds.) Phi theory. Phi Features across Modules and Interfaces, pp. 83–130. The
MIT Press (2008)

15. Shieber, S.M.: An introduction to unification-based approaches to grammar. CSLI
lecture notes (1986)

16. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) Logical Aspects
of Computational Linguistics: First International Conference, LACL ’96 Nancy,
France, September 23–25, 1996 Selected Papers, pp. 68–95. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1997)

17. Stabler, E.P.: Recognizing head movement. In: Proceedings of the 4th International
Conference on Logical Aspects of Computational Linguistics. pp. 245–260. LACL
’01, Springer-Verlag, London, UK, UK (2001)

18. Stabler, E.P.: Computational perspectives on minimalism. Oxford handbook of
linguistic minimalism pp. 617–643 (2011)

19. Trommer, J.: Morphology consuming syntax’ resources: generation and parsing
in a minimalist version of distributed morphology. In: Proceedings of the ESSLI
Workshop on Resource Logics and Minimalist Grammars (1999)

